[Méthode WKB et instabilité géométrique pour les équations de Schrödinger non linéaires sur des surfaces]
In this paper we are interested in constructing WKB approximations for the nonlinear cubic Schrödinger equation on a Riemannian surface which has a stable geodesic. These approximate solutions will lead to some instability properties of the equation.
À l'aide de la méthode WKB nous construisons des solutions approchées à l'équation de Schrödinger cubique sur une variété qui possède une géodésique stable. Cette construction permet d'obtenir des résultats d'instabilités dans des espaces de Sobolev.
Keywords: nonlinear schrödinger equation, instability, quasimode
Mots-clés : équation de schrödinger non linéaire, instabilité, quasi-mode
@article{BSMF_2008__136_2_167_0,
author = {Thomann, Laurent},
title = {The {WKB} method and geometric instability for nonlinear {Schr\"odinger} equations on surfaces},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {167--193},
year = {2008},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {136},
number = {2},
doi = {10.24033/bsmf.2553},
mrnumber = {2415340},
zbl = {1161.35050},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2553/}
}
TY - JOUR AU - Thomann, Laurent TI - The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces JO - Bulletin de la Société Mathématique de France PY - 2008 SP - 167 EP - 193 VL - 136 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2553/ DO - 10.24033/bsmf.2553 LA - en ID - BSMF_2008__136_2_167_0 ER -
%0 Journal Article %A Thomann, Laurent %T The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces %J Bulletin de la Société Mathématique de France %D 2008 %P 167-193 %V 136 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2553/ %R 10.24033/bsmf.2553 %G en %F BSMF_2008__136_2_167_0
Thomann, Laurent. The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces. Bulletin de la Société Mathématique de France, Tome 136 (2008) no. 2, pp. 167-193. doi: 10.24033/bsmf.2553
[1] & - Opérateurs pseudo-différentiels et théorème de Nash-Moser, Savoirs Actuels, InterÉditions, Paris, 1991. | Zbl
[2] - « On the nonlinear Schrödinger dynamics on », J. Math. Pures Appl. (9) 83 (2004), p. 77-98. | Zbl | MR
[3] - « Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations », Geom. Funct. Anal. 3 (1993), p. 107-156. | Zbl | MR
[4] , & - « An instability property of the nonlinear Schrödinger equation on », Math. Res. Lett. 9 (2002), p. 323-335. | Zbl | MR
[5] , & - « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math. 126 (2004), p. 569-605. | Zbl | MR
[6] -, « Agmon estimates and nonlinear instability for Schrödinger equations », preprint, 2005.
[7] - « Remarks on the Cauchy problem for nonlinear Schrödinger equations with potential », preprint arXiv:math.AP/0609391.
[8] -, « Geometric optics and instability for semi-classical Schrödinger equations », Arch. Ration. Mech. Anal. 183 (2007), p. 525-553. | Zbl | MR
[9] , & - « Ill-posedness for nonlinear Schrödinger and wave equation », to appear in Annales IHP.
[10] -, « Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations », Amer. J. Math. 125 (2003), p. 1235-1293. | Zbl | MR
[11] - « The quantum stability problem for some class of time-dependent Hamiltonians », Ann. Physics 185 (1988), p. 86-110. | Zbl | MR
[12] - Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, vol. 1336, Springer, 1988. | Zbl | MR
[13] - Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., 1982. | Zbl | MR
[14] - Differential equations and dynamical systems, Texts in Applied Mathematics, vol. 7, Springer, 1991. | Zbl | MR
[15] - « Approximate eigenfunctions of the Laplacian », J. Differential Geometry 12 (1977), p. 87-100. | Zbl | MR
Cité par Sources :







