@incollection{AST_2008__322__225_0, author = {Sarnak, Peter}, title = {Equidistribution and primes}, booktitle = {G\'eom\'etrie diff\'erentielle, physique math\'ematique, math\'ematiques et soci\'et\'e (II) - Volume en l'honneur de Jean-Pierre Bourguignon}, editor = {Hijazi Oussama}, series = {Ast\'erisque}, pages = {225--240}, publisher = {Soci\'et\'e math\'ematique de France}, number = {322}, year = {2008}, mrnumber = {2521658}, zbl = {1223.11112}, language = {en}, url = {http://www.numdam.org/item/AST_2008__322__225_0/} }
TY - CHAP AU - Sarnak, Peter TI - Equidistribution and primes BT - Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon AU - Collectif ED - Hijazi Oussama T3 - Astérisque PY - 2008 SP - 225 EP - 240 IS - 322 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2008__322__225_0/ LA - en ID - AST_2008__322__225_0 ER -
%0 Book Section %A Sarnak, Peter %T Equidistribution and primes %B Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon %A Collectif %E Hijazi Oussama %S Astérisque %D 2008 %P 225-240 %N 322 %I Société mathématique de France %U http://www.numdam.org/item/AST_2008__322__225_0/ %G en %F AST_2008__322__225_0
Sarnak, Peter. Equidistribution and primes, in Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon, Astérisque, no. 322 (2008), pp. 225-240. http://www.numdam.org/item/AST_2008__322__225_0/
[1] Linear equations in primes", Mathematika 39 (1992), p. 367-378. | DOI | MR | Zbl
- "[2] Polynomial extensions of van der Waerden's and Szemerédi's theorems", J. Amer. Math. Soc. 9 (1996), p. 725-753. | DOI | MR | Zbl
& - "[3] Uniform expansion bounds for Cayley graphs of ", Ann. of Math. 167 (2008), p. 625-642. | DOI | MR | Zbl
& - "[4] Sieving and expanders", C. R. Math. Acad. Sci. Paris 343 (2006), p. 155-159. | DOI | MR | Zbl
, & - "[5] Affine sieve, expanders and sum product", http://www.math.princeton.edu/sarnak/sespM8.pdf. | DOI | Zbl
, & , "[6] A sum-product estimate in finite fields, and applications", Geom. Funct. Anal. 14 (2004), p. 27-57. | DOI | MR | Zbl
, & - "[7] The sequence of radii of the Apollonian packing", Math. Comp. 39 (1982), p. 249-254. | DOI | MR | Zbl
- "[8] On Fibonacci numbers with few prime divisors", Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), p. 17-20. | DOI | MR | Zbl
, , & - "[9] Demonstration de la conjecture ", Invent. Math. 151 (2003), p. 297-328. | DOI | MR | Zbl
- "[10] The polynomial captures its primes", Ann. of Math. 148 (1998), p. 945-1040. | DOI | EuDML | MR | Zbl
& - "[11] The modular group action on real -characters of a one-holed torus", Geom. Topol. 7 (2003), p. 443-486. | DOI | EuDML | MR | Zbl
- "[12] Small gaps between products of two primes", preprint, arXiv:math/0609615vl, 2006. | MR | Zbl
, , & - "[13] Apollonian circle packings: number theory", J. Number Theory 100 (2003), p. 1-45. | DOI | MR | Zbl
, , , & - "[14] Prime number patterns", Amer. Math. Monthly 115 (2008), p. 279-296. | DOI | MR | Zbl
- "[15] Linear equations in primes", to appear in Annals of Math., arXiv:math/0606088v2, 2006. | MR | Zbl
& - "[16] The primes contain arbitrarily long arithmetic progressions", Ann. of Math. 167 (2008), p. 481-547. | DOI | MR | Zbl
& , "[17] Sieve methods, Academic Press, 1974. | MR | Zbl
& -[18] Some problems of 'Partitio Numerorum.' III. On the expression of a number as a sum of primes", Acta Math. 44 (1922), p. 1-70. | DOI | JFM | MR
& - "[19] Primes represented by binary cubic forms", Proc. London Math. Soc. 84 (2002), p. 257-288. | DOI | MR | Zbl
& - "[20] Diophantische Analysis und Modulfunktionen", Math. Z. 56 (1952), p. 227-253. | DOI | EuDML | MR | Zbl
- "[21] Growth and generation in ", Ann. of Math. 167 (2008), p. 601-623. | MR | Zbl
- "[22] Nonconventional ergodic averages and nilmanifolds", Ann. of Math. 161 (2005), p. 397-488. | DOI | MR | Zbl
& - "[23] Primes represented by quadratic polynomials in two variables", Acta Arith. 24 (1973/74), p. 435-459. | DOI | EuDML | MR | Zbl
- "[24] Integral points on quadrics in three variables whose coordinates have few prime factors", to appear in Israel Jnl. of Math., http://www.math,princeton.edu/sarnak/few-final.pdf. | MR | Zbl
& - "[25] Cayley graphs: eigenvalues, expanders and random walks", in Surveys in combinatorics, 1995 (Stirling), London Math. Soc. Lecture Note Ser., vol. 218, Cambridge Univ. Press, 1995, p. 155-189. | DOI | MR | Zbl
- "[26] Hilbert's tenth problem, Foundations of Computing Series, MIT Press, 1993. | MR | Zbl
-[27] Congruence properties of Zariski-dense subgroups. I", Proc. London Math. Soc. 48 (1984), p. 514-532. | DOI | MR | Zbl
, & - "[28] Prime and almost prime integral points on principal homogeneous spaces", http://www.math.princeton.edu/sarnak/NS-final-0ct-08.pdf. | MR | Zbl
& - "[29]
& - in preparation.[30] What is an expander?", Notices Amer. Math. Soc. 51 (2004), p. 762-763. | MR | Zbl
- "[31] Notes on the generalized Ramanujan conjectures", in Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., 2005, p. 659-685. | MR | Zbl
, "[32] Letter to J. Lagarias, June 2007, http://www.math.princeton.edu/sarnak/AppolonianPackings.pdf.
,[33] Bounds for multiplicities of automorphic representations", Duke Math. J. 64 (1991), p. 207-227. | DOI | MR | Zbl
& - "[34] Sur certaines hypothèses concernant les nombres premiers", Acta Arith. 4 (1958), p. 185-208. | DOI | EuDML | MR | Zbl
& - "[35] Logical dreams", Bull. Amer. Math. Soc. (N.S.) 40 (2003), p. 203-228. | DOI | MR | Zbl
- "[36] The primes contain arbitrary long polynomial progressions", to appear in Acta Math., 2006. | MR | Zbl
& - "[37] The Hardy-Littlewood method, Cambridge Tracts in Mathematics, vol. 80, Cambridge University Press, 1981. | MR | Zbl
-[38] The Birch and Swinnerton-Dyer conjecture", in The millennium prize problems, Clay Math. Inst., Cambridge, MA, 2006, p. 31-41. | MR | Zbl
- "