@incollection{AST_2008__322__1_0, author = {Voisin, Claire}, title = {Rationally connected $3$-folds and symplectic geometry}, booktitle = {G\'eom\'etrie diff\'erentielle, physique math\'ematique, math\'ematiques et soci\'et\'e (II) - Volume en l'honneur de Jean-Pierre Bourguignon}, editor = {Hijazi Oussama}, series = {Ast\'erisque}, pages = {1--21}, publisher = {Soci\'et\'e math\'ematique de France}, number = {322}, year = {2008}, mrnumber = {2521651}, zbl = {1178.14048}, language = {en}, url = {http://www.numdam.org/item/AST_2008__322__1_0/} }
TY - CHAP AU - Voisin, Claire TI - Rationally connected $3$-folds and symplectic geometry BT - Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon AU - Collectif ED - Hijazi Oussama T3 - Astérisque PY - 2008 SP - 1 EP - 21 IS - 322 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2008__322__1_0/ LA - en ID - AST_2008__322__1_0 ER -
%0 Book Section %A Voisin, Claire %T Rationally connected $3$-folds and symplectic geometry %B Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon %A Collectif %E Hijazi Oussama %S Astérisque %D 2008 %P 1-21 %N 322 %I Société mathématique de France %U http://www.numdam.org/item/AST_2008__322__1_0/ %G en %F AST_2008__322__1_0
Voisin, Claire. Rationally connected $3$-folds and symplectic geometry, in Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon, Astérisque, no. 322 (2008), pp. 1-21. http://www.numdam.org/item/AST_2008__322__1_0/
[1] The intrinsic normal cone", Invent. Math. 128 (1997), p. 45-88. | DOI | MR | Zbl
& - "[2] Connexité rationnelle des variétés de Fano", Ann. Sci. École Norm. Sup. 25 (1992), p. 539-545. | DOI | EuDML | Numdam | MR | Zbl
- "[3] Rigidity theorems for primitive Fano -folds", Comm. Anal. Geom. 2 (1994), p. 173-201. | DOI | MR | Zbl
& - "[4] Notes on stable maps and quantum cohomology", in Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., 1997, p. 45-96. | DOI | MR | Zbl
& - "[5] Families of rationally connected varieties", J. Amer. Math. Soc. 16 (2003), p. 57-67. | DOI | MR | Zbl
, & - "[6] Birational cobordism invariance of uniruled symplectic manifolds", Invent. Math. 172 (2008), p. 231-275. | DOI | MR | Zbl
, & - "[7] Introduction to the minimal model problem", in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, 1987, p. 283-360. | DOI | MR | Zbl
, & - "[8] Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 32, Springer, 1996. | MR | Zbl
-[9] Low degree polynomial equations: arithmetic, geometry and topology", in European Congress of Mathematics, Vol. I (Budapest, 1996), Progr. Math., vol. 168, Birkhäuser, 1998, p. 255-288. | MR | Zbl
, "[10] Rational connectedness and boundedness of Fano manifolds", J. Differential Geom. 36 (1992), p. 765-779. | DOI | MR | Zbl
, & - "[11] Rationally connected varieties", J. Algebraic Geom. 1 (1992), p. 429-448. | MR | Zbl
, & , "[12] Comparison of algebraic and symplectic Gromov-Witten invariants", Asian J. Math. 3 (1999), p. 689-728. | DOI | MR | Zbl
& - "[13] The structure of rational and ruled symplectic -manifolds", J. Amer. Math. Soc. 3 (1990), p. 679-712. | MR | Zbl
- "[14] Hamiltonian manifolds are uniruled", preprint, 2007. | MR | Zbl
, "[15] Geometry of higher-dimensional algebraic varieties, DMV Seminar, vol. 26, Birkhäuser, 1997. | MR | Zbl
& -[16] Threefolds whose canonical bundles are not numerically effective", Ann. of Math. 116 (1982), p. 133-176. | DOI | MR | Zbl
- "[17] Classification of Fano -folds with ", Manuscripta Math. 36 (1981/82), p. 147-162. | DOI | EuDML | MR | Zbl
& - "[18] Symplectic topology and extremal rays", Geom. Funct. Anal. 3 (1993), p. 395-430. | DOI | EuDML | MR | Zbl
- "[19] Virtual neighborhoods and pseudo-holomorphic curves", in Proceedings of 6th Gökova Geometry-Topology Conference, vol. 23, 1999, p. 161-231. | MR | Zbl
, "[20] Algebraic and symplectic Gromov-Witten invariants coincide", Ann. Inst. Fourier (Grenoble) 49 (1999), p. 1743-1795. | DOI | EuDML | Numdam | MR | Zbl
- "