@incollection{AST_1984__113-114__173_0, author = {Cenkl, Bohumil and Porter, Richard}, title = {Algebraic categories and the homotopy theory of some {C.W.} complexes}, booktitle = {Homotopie alg\'ebrique et alg\`ebre locale}, author = {Collectif}, series = {Ast\'erisque}, publisher = {Soci\'et\'e math\'ematique de France}, number = {113-114}, year = {1984}, zbl = {0559.55015}, mrnumber = {749053}, language = {en}, url = {http://www.numdam.org/item/AST_1984__113-114__173_0/} }
TY - CHAP AU - Cenkl, Bohumil AU - Porter, Richard TI - Algebraic categories and the homotopy theory of some C.W. complexes BT - Homotopie algébrique et algèbre locale AU - Collectif T3 - Astérisque PY - 1984 IS - 113-114 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1984__113-114__173_0/ UR - https://zbmath.org/?q=an%3A0559.55015 UR - https://www.ams.org/mathscinet-getitem?mr=749053 LA - en ID - AST_1984__113-114__173_0 ER -
Cenkl, Bohumil; Porter, Richard. Algebraic categories and the homotopy theory of some C.W. complexes, in Homotopie algébrique et algèbre locale, Astérisque, no. 113-114 (1984), pp. 173-178. http://www.numdam.org/item/AST_1984__113-114__173_0/
[1] The homotopy theory in a cofibration category, preprint.
-[2] Differential forms and torsion in the fundamental group. To appear in Advances in Math. | MR | Zbl
and -[3] Tame Homotopy Theory. Proceedings of the summer conference on manifolds and homotopy theory, 1980.
and -[4] Tame Homotopy Theory, Topology, Vol. 18, 321-338 (1979). | DOI | MR | Zbl
-[5] Dénombrement des Types de -Homotopie Théorie de la Déformation, Mémoire de la Société Mathématique de France, tome 108/Fascicule 3. | EuDML | MR | Zbl
[6] Obscructions to Homotopy Equivalences, Advances in Math. 32, 233-279 (1979). | DOI | MR | Zbl
and -[7] Deformation theory and rational homotopy type, preprint.
and -[8] Algebraic Topology, MacGraw Hill, 1966. | MR | Zbl
-[9] Infinitesimal computations in topology, Pub. Math. 47 (1978) I.H.E.S. 269-332. | DOI | EuDML | MR | Zbl
-[10] Combinatorial Homotopy I., Bull. Amer. Math. Soc. 55, 213-245 (1949) | DOI | MR | Zbl
-[11] The homotopy type of a special kind of polyhedron. Ann. Soc. Polon. Math. 21 (1948) 176-186 (1949). | MR | Zbl
-