Asymptotic optimal location of facilities in a competition between population and industries
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 12 (2013) no. 1, p. 239-273

We consider the problem of optimally locating a given number k of points in n for an integral cost function which takes into account two measures ϕ + and ϕ - . The points represent for example new industrial facilities that have to be located, the measure ϕ + representing in this case already existing industries that want to be close to the new ones, and ϕ - representing private citizens who want to stay far away. The asymptotic analysis as k is performed, providing the asymptotic density of optimal locations.

Published online : 2019-02-21
Classification:  49Q20,  49Q10
@article{ASNSP_2013_5_12_1_239_0,
     author = {Buttazzo, Giuseppe and Santambrogio, Filippo and Stepanov, Eugene},
     title = {Asymptotic optimal location of facilities in a competition between population and industries},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 12},
     number = {1},
     year = {2013},
     pages = {239-273},
     zbl = {1264.49047},
     mrnumber = {3088443},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2013_5_12_1_239_0}
}
Buttazzo, Giuseppe; Santambrogio, Filippo; Stepanov, Eugene. Asymptotic optimal location of facilities in a competition between population and industries. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 12 (2013) no. 1, pp. 239-273. http://www.numdam.org/item/ASNSP_2013_5_12_1_239_0/

[1] L. Ambrosio, N. Fusco and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. | MR 1857292 | Zbl 0957.49001

[2] L. Ambrosio and C. Mantegazza, Curvature and distance function from a manifold, J. Geom. Anal. 8 (1998), 723–748. Dedicated to the memory of Fred Almgren. | MR 1731060 | Zbl 0941.53009

[3] L. Ambrosio and P. Tilli, “Topics on Analysis in Metric Spaces”, Vol. 25, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004. | MR 2039660 | Zbl 1080.28001

[4] G. Bouchitté, C. Jimenez and R. Mahadevan, Asymptotic analysis of a class of optimal location problems, J. Math. Pures Appl. 95 (2011), 382–419. | MR 2776375 | Zbl 1217.49035

[5] G. Bouchitté, C. Jimenez and R. Mahadevan, Asymptotique d’un problème de positionnement optimal, C. R. Math. Acad. Sci. Paris 335 (2002), 853–858. | MR 1947712 | Zbl 1041.90025

[6] A. Brancolini, G. Buttazzo, F. Santambrogio and E. Stepanov, Long-term planning versus short-term planning in the asymptotical location problem, ESAIM Control Optim. Calc. Var. 15 (2009), 509–524. | Numdam | MR 2542570 | Zbl 1169.90386

[7] G. Buttazzo, Optimization problems in mass transportation theory, Boll. Unione Mat. Ital. 1 (2008), 401–427. | MR 2424301 | Zbl 1210.49044

[8] P. Cohort, Limit theorems for random normalized distortion, Ann. Appl. Probab. 14 (2004), 118–143. | MR 2023018 | Zbl 1041.60022

[9] G. Dal Maso, “An Introduction to Γ-convergence”, Birkhäuser, Basel, 1992. | MR 1201152 | Zbl 0816.49001

[10] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 842–850. | MR 448194 | Zbl 0339.49005

[11] S. P. Fekete, J. S. B. Mitchell and K. Beurer, On the continuous Fermat-Weber problem, Oper. Res. 53 (2005), 61–76. | MR 2131100 | Zbl 1165.90553

[12] S. Graf and H. Luschgy, “Foundations of Quantization for Probability Distributions”, Vol. 1730, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000. | MR 1764176 | Zbl 0951.60003

[13] D. Liberzon, “Switching in Systems and Control”, Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA, 2003. | MR 1987806 | Zbl 1036.93001

[14] C. Mantegazza and A. Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds, Appl. Math. Optim. 47 (2003), 1–25. | MR 1941909 | Zbl 1048.49021

[15] F. Morgan and R. Bolton, Hexagonal economic regions solve the location problem, Amer. Math. Monthly 109 (2002), 165–172. | MR 1903153 | Zbl 1026.90059

[16] S. J. N. Mosconi and P. Tilli, Γ-convergence for the irrigation problem, J. Convex Anal. 12 (2005), 145–158. | MR 2135803 | Zbl 1076.49024

[17] A. Suzuki and Z. Drezner, The p-center location, Location Science 4 (1996), 69–82. | Zbl 0917.90233

[18] A. Suzuki and A. Okabe, Using Voronoi diagrams, In: “Facility Location: a Survey of Applications and Methods”, Z. Drezner (ed.), Springer Series in Operations Research, 103–118, Springer Verlag, 1995. | MR 1358610

[19] A. Weber, “ Über den Standort der Industrien, Erster Teil: Reine Theorie des Standortes”, Mohr, Tübingen, 1909.