Global hypoellipticity and compactness of resolvent for Fokker-Planck operator
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 4, p. 789-815

In this paper we study the Fokker-Planck operator with potential V(x), and analyze some kind of conditions imposed on the potential to ensure the validity of global hypoelliptic estimates (see Theorem 1.1). As a consequence, we obtain the compactness of resolvent of the Fokker-Planck operator if either the Witten Laplacian on 0-forms has a compact resolvent or some additional assumption on the behavior of the potential at infinity is fulfilled. This work improves the previous results of Hérau-Nier [5] and Helffer-Nier [3], by obtaining a better global hypoelliptic estimate under weaker assumptions on the potential.

Published online : 2018-06-21
Classification:  35H10,  47A10
@article{ASNSP_2012_5_11_4_789_0,
     author = {Li, Wei-Xi},
     title = {Global hypoellipticity and compactness of resolvent for Fokker-Planck operator},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 11},
     number = {4},
     year = {2012},
     pages = {789-815},
     zbl = {1261.35046},
     mrnumber = {3060700},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2012_5_11_4_789_0}
}
Li, Wei-Xi. Global hypoellipticity and compactness of resolvent for Fokker-Planck operator. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 11 (2012) no. 4, pp. 789-815. http://www.numdam.org/item/ASNSP_2012_5_11_4_789_0/

[1] F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pure Appl. 81 (2002), 1135–1159. | MR 1949176 | Zbl 1045.35093

[2] L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation, Comm. Pure Appl. Math. 54 (2001), 1–42. | MR 1787105 | Zbl 1029.82032

[3] B. Helffer and F. Nier, “Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians”, Lecture Notes in Mathematics, vol. 1862, Springer-Verlag, Berlin, 2005. | MR 2130405 | Zbl 1072.35006

[4] B. Helffer and J. Nourrigat, “Hypoellipticité Maximale pour des Opérateurs Polynômes de Champs de Vecteurs”, Progress in Mathematics, vol. 58, Birkhäuser Boston Inc., 1985. | MR 897103 | Zbl 0568.35003

[5] F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal. 171 (2004), 151–218. | MR 2034753 | Zbl 1139.82323

[6] L. Hörmander, “The Analysis of Linear Partial Differential Operators. III”, Springer-Verlag, Berlin, 1985. | MR 781536 | Zbl 0601.35001

[7] J. J. Kohn, Lectures on degenerate elliptic problems, In: “Pseudodifferential Operator with Applications (Bressanone, 1977)”, Liguori, Naples, 1978, 89–151. | MR 660652 | Zbl 0448.35046

[8] L. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247–320. | MR 436223 | Zbl 0346.35030