Non-divergence form parabolic equations associated with non-commuting vector fields: boundary behavior of nonnegative solutions
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 2, pp. 437-474.

In a cylinder ${\Omega }_{T}=\Omega ×\left(0,T\right)\subset {ℝ}_{+}^{n+1}$ we study the boundary behavior of nonnegative solutions of second order parabolic equations of the form

 $Hu=\sum _{i,j=1}^{m}{a}_{ij}\left(x,t\right){X}_{i}{X}_{j}u-{\partial }_{t}u=0,\phantom{\rule{4pt}{0ex}}\left(x,t\right)\in {ℝ}_{+}^{n+1},$

where $X=\left\{{X}_{1},...,{X}_{m}\right\}$ is a system of ${C}^{\infty }$ vector fields in ${ℝ}^{n}$ satisfying Hörmander’s rank condition (1.2), and $\Omega$ is a non-tangentially accessible domain with respect to the Carnot-Carathéodory distance $d$ induced by $X$. Concerning the matrix-valued function $A=\left\{{a}_{ij}\right\}$, we assume that it is real, symmetric and uniformly positive definite. Furthermore, we suppose that its entries ${a}_{ij}$ are Hölder continuous with respect to the parabolic distance associated with $d$. Our main results are: 1) a backward Harnack inequality for nonnegative solutions vanishing on the lateral boundary (Theorem 1.1); 2) the Hölder continuity up to the boundary of the quotient of two nonnegative solutions which vanish continuously on a portion of the lateral boundary (Theorem 1.2); 3) the doubling property for the parabolic measure associated with the operator $H$ (Theorem 1.3). These results generalize to the subelliptic setting of the present paper, those in Lipschitz cylinders by Fabes, Safonov and Yuan in [20,39]. With one proviso: in those papers the authors assume that the coefficients ${a}_{ij}$ be only bounded and measurable, whereas we assume Hölder continuity with respect to the intrinsic parabolic distance.

Publié le :
Classification : 31C05,  35C15,  65N99
@article{ASNSP_2012_5_11_2_437_0,
author = {Frentz, Marie and Garofalo, Nicola and G\"otmark, Elin and Munive, Isidro and Nystr\"om, Kaj},
title = {Non-divergence form parabolic equations associated with non-commuting vector fields: boundary behavior of nonnegative solutions},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {437--474},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 11},
number = {2},
year = {2012},
zbl = {1258.31005},
mrnumber = {3011998},
language = {en},
url = {http://www.numdam.org/item/ASNSP_2012_5_11_2_437_0/}
}
Frentz, Marie; Garofalo, Nicola; Götmark, Elin; Munive, Isidro; Nyström, Kaj. Non-divergence form parabolic equations associated with non-commuting vector fields: boundary behavior of nonnegative solutions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 2, pp. 437-474. http://www.numdam.org/item/ASNSP_2012_5_11_2_437_0/

 P. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints, Ark. Mat. 22 (1984), 153–173. | MR 765409 | Zbl 0557.35033

 A. Bonfiglioli and F. Uguzzoni, Maximum principle and propagation for intrinsicly regular solutions of differential inequalities structured on vector fields, J. Math. Anal. Appl. (2) 322 (2006), 886–900. | MR 2250624 | Zbl 1106.35149

 J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les operateurs elliptique degeneres, Ann. Inst. Fourier (Grenoble) 119 (1969), 277–304. | EuDML 73982 | Numdam | MR 262881 | Zbl 0176.09703

 M. Bramanti, L. Brandolini, E. Lanconelli and F. Uguzzoni, Heat kernels for non-divergence operators of Hörmander type, C. R. Math. Acad. Sci. Paris 343 (2006), 463–466. | MR 2267187 | Zbl 1109.35008

 M. Bramanti, L. Brandolini, E. Lanconelli and F. Uguzzoni, “Non-Divergence Equations Structured on Hörmander Vector Fields: heat Kernels and Harnack Inequalities”, Mem. Amer. Math. Soc., Vol. 240, 2010. | MR 2604962 | Zbl 1218.35001

 L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), 621–640. | MR 620271 | Zbl 0512.35038

 L. Capogna and N. Garofalo, Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics, J. Fourier Anal. Appl. 4 (1998), 403–432. | EuDML 59574 | MR 1658616 | Zbl 0926.35043

 L. Capogna, N. Garofalo and D. M. Nhieu, A subelliptic version of a theorem of Dahlberg for the subelliptic Dirichlet problem, Math. Res. Lett. 5 (1998), 541–549. | MR 1653336 | Zbl 0934.22017

 L. Capogna, N. Garofalo and D. M. Nhieu, Examples of uniform and NTA domains in Carnot groups, In: “Proceedings on Analysis and Geometry” (Russian) (Novosibirsk Akademgorodok, 1999), Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 2000, 103–121. | MR 1847513 | Zbl 1017.30020

 L. Capogna, N. Garofalo and D. M. Nhieu, Properties of harmonic measures in the Dirichlet problem for nilpotent Lie groups of Heisenberg type, Amer. J. Math. 124 (2002), 273–306. | MR 1890994 | Zbl 0998.22001

 L. Capogna, N. Garofalo and D. M. Nhieu, Mutual absolute continuity of harmonic and surface measure for Hörmander type operators, In: “Perspectives in Partial Differential Equations, Harmonic Analysis and Applications”, Proc. Sympos. Pure Math. Amer. Math. Soc., Vol. 79, Providence, RI, 2008, 49–100. | MR 2500489 | Zbl 1182.31012

 W. L. Chow, Über systeme von linearen partiellen differentialgleichungen erster ordnug, Math. Ann. 117 (1939), 98–105. | EuDML 160043 | JFM 65.0398.01 | MR 1880

 G. Citti, Wiener estimates at boundary points for Hörmander’s operators, Boll. Un. Mat. Ital. B (7) 2 (1988), 667–681. | MR 963325 | Zbl 0663.31006

 D. Danielli, Regularity at the boundary for solutions of nonlinear subelliptic equations, Indiana Univ. Math. J. 44 (1995), 269–286. | MR 1336442 | Zbl 0828.35022

 E. Fabes, N. Garofalo, S. Marin-Malave and S. Salsa, Fatou theorems for some nonlinear elliptic equations, Rev. Mat. Iberoamericana 4 (1988), 227–251. | EuDML 39377 | MR 1028741 | Zbl 0703.35058

 E. Fabes, N. Garofalo and S. Salsa, A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math. 30 (1986), 536–565. | MR 857210 | Zbl 0625.35006

 E. Fabes and C. Kenig, Examples of singular parabolic measures and singular transition probability densities, Duke Math. J. 48 (1981), 845–856. | MR 782580 | Zbl 0482.35021

 C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems, Proceedings of the Conference in Harmonic Analysis in Honor of A. Zygmund, Wadsworth Math. Ser., Belmont, CA, (1981), 530–606. | MR 730094 | Zbl 0503.35071

 E. Fabes and M. Safonov, Behaviour near the boundary of positive solutions of second order parabolic equations, J. Fourier Anal. Appl. 3 (1997), 871–882. | EuDML 59543 | MR 1600211 | Zbl 0939.35082

 E. Fabes, M. Safonov and Y. Yuan, Behavior near the boundary of positive solutions of second order parabolic equations.II, Trans. Amer. Math. Soc. 351 (1999), 4947–4961. | MR 1665328 | Zbl 0976.35031

 E. Fabes and D. Stroock, A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash, Arch. Rational Mech. Anal. 96 (1986), 327–338. | MR 855753 | Zbl 0652.35052

 N. Garofalo, Second order parabolic equations in nonvariational forms: boundary Harnack principle and comparison theorems for nonnegative solutions, Ann. Mat. Pura Appl. 138 (1984), 267–296. | MR 779547 | Zbl 0574.35039

 N. Garofalo and D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081–1144. | MR 1404326 | Zbl 0880.35032

 S. Hofmann and J. Lewis, The Dirichlet problem for parabolic operators with singular drift term, Mem. Amer. Math. Soc. 151 (2001), 1–113. | MR 1828387 | Zbl 1149.35048

 H. Hörmander, Hypoelliptic second-order differential equations, Acta Math. 119 (1967), 147–171. | MR 222474 | Zbl 0156.10701

 D. Jerison and C. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. Math. 46 (1982), 80–147. | MR 676988 | Zbl 0514.31003

 C. Kenig and J. Pipher, The Dirichlet problem for elliptic operators with drift term, Publ. Mat. 45 (2001), 199–217. | EuDML 41425 | MR 1829584 | Zbl 1113.35314

 N. V. Krylov, sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation, Sibirski Math. Zh. 17 (1976), 226–236. | MR 420016 | Zbl 0362.35038

 N. Krylov and M. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 161–175. | MR 563790 | Zbl 0439.35023

 E. Lanconelli and F. Uguzzoni, Potential analysis for a class of diffusion equations: A Gaussian bounds approach, J. Differential Equations 248 (2010), 2329–2367. | MR 2595724 | Zbl 1191.35104

 R. Monti and D. Morbidelli, Non-tangentially accessible domains for vector fields, Indiana Univ. Math. J. 54 (2005), 473–498. | MR 2136818 | Zbl 1143.57013

 R. Monti and D. Morbidelli, Regular domains in homogeneous groups, Trans. Amer. Math. Soc. 357 (2005), 2975–3011. | MR 2135732 | Zbl 1067.43003

 I. Munive, Boundary behavior of nonnegative solutions of the heat equation in sub-Riemannian spaces, Potential Anal., advance online publication doi:10.1007/s11118-011-9258-5. | MR 2988206 | Zbl 1258.35109

 K. Nyström, The Dirichlet problem for second order parabolic operators, Indiana Univ. Math. J. 46 (1997), 183–245. | MR 1462802 | Zbl 0878.35010

 P. Negrini and V. Scornazzani, Wiener criterion for a class of degenerate elliptic operators, J. Differential Equations 166 (1987), 151–167. | MR 871992 | Zbl 0633.35018

 A. Nagel, E. Stein and S. Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), 103–147. | MR 793239 | Zbl 0578.32044

 P. K. Rashevsky, Any two points of a totally nonholonomic space may be connected by an admissible line, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math., (Russian) 2 (1938), 83–94.

 S. Salsa, Some properties of nonnegative solution to parabolic differential equations, Ann. Mat. Pura Appl. 128 (1981), 193–206. | MR 640782 | Zbl 0477.35049

 M. Safonov and Y. Yuan, Doubling properties for second order parabolic equations, Ann. of Math. 150 (1999), 313–327. | EuDML 129683 | MR 1715327 | Zbl 1157.35391

 F. Uguzzoni, Cone criteria for non-divergence equations modeled on Hörmander vector fields, In: “Subelliptic PDE’s and Applications to Geometry and Finance”, Lect. Notes Semin. Interdiscip. Mat., 6, Semin. Interdiscip. Mat. (S.I.M.), Potenza, 2007, 227–241. | MR 2384649 | Zbl 1165.35007