Compact moduli for certain Kodaira fibrations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 9 (2010) no. 4, p. 851-874
We explicitly describe the possible degenerations of a class of double Kodaira fibrations in the moduli space of stable surfaces. Using deformation theory we also show that under some assumptions we get a connected component of the moduli space of stable surfaces.
Classification:  14J29,  14J10,  14D20
@article{ASNSP_2010_5_9_4_851_0,
     author = {Rollenske, S\"onke},
     title = {Compact moduli for certain Kodaira fibrations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 9},
     number = {4},
     year = {2010},
     pages = {851-874},
     zbl = {1210.14041},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2010_5_9_4_851_0}
}
Rollenske, Sönke. Compact moduli for certain Kodaira fibrations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 9 (2010) no. 4, pp. 851-874. http://www.numdam.org/item/ASNSP_2010_5_9_4_851_0/

[1] D. Abramovich and B. Hassett, Stable varieties with a twist, arXiv:0904.2797 (2009).

[2] V. Alexeev, Higher-dimensional analogues of stable curves, In: “International Congress of Mathematicians”, Vol. II, Zürich, 2006, Eur. Math. Soc, 515–536. | Zbl 1102.14023

[3] V. Alexeev, Limits of stable pairs, Pure Appl. Math. Q. 4 (2008), 767–783. | Zbl 1158.14020

[4] V. Alexeev and R. Pardini, Explicit compactifications of moduli spaces of Campedelli and Burniat surfaces, arXiv:0901.4431 (2009).

[5] D. Abramovich and A. Vistoli, Complete moduli for fibered surfaces, In: “Recent Progress in Intersection Theory”, Bologna, 1997, Trends Math., Birkhäuser Boston, Boston, MA, 2000, 1–31. | Zbl 0979.14018

[6] W. P. Barth, K. Hulek, C. A. M. Peters and A. Van De Ven, “Compact Complex Surfaces”, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 4, Springer-Verlag, Berlin, second edition, 2004. | Zbl 1036.14016

[7] F. Catanese and S. Rollenske, Double Kodaira fibrations, J. Reine Angew. Math. 628 (2009), 205–233. | Zbl 1189.14015

[8] B. Fantechi and M. Manetti, Obstruction calculus for functors of Artin rings. I, J. Algebra 202 (1998), 541–576. | Zbl 0981.13009

[9] D. Gieseker, Global moduli for surfaces of general type, Invent. Math. 43 (1977), 233–282. | Zbl 0389.14006

[10] R. Hartshorne, “Algebraic Geometry”, Springer-Verlag, New York, 1977, Vol. 52, Graduate Texts in Mathematics. | Zbl 0367.14001

[11] B. Hassett, Stable log surfaces and limits of quartic plane curves, Manuscripta Math. 100 (1999), 469–487. | Zbl 0973.14014

[12] B. Hassett, Stable limits of log surfaces and Cohen-Macaulay singularities, J. Algebra 242 (2001), 225–235. | Zbl 1064.14037

[13] J. Harris and I. Morrison, “Moduli of Curves”, Graduate Texts in Mathematics, Vol. 87, Springer-Verlag, New York, 1998. | Zbl 0705.14026

[14] J. Kollár and S. Mori, “Birational Geometry of Algebraic Varieties”, Cambridge Tracts in Mathematics, Vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.

[15] S. J. Kovács, Young person’s guide to moduli of higher dimensional varieties, In: “Proceedings of the AMS Summer Research Institute held at the University of Washington”, Seattle, WA, July 25 - August 12, 2005, Proceedings of Symposia in Pure Mathematics. American Mathematical Society, 2005. | Zbl 1182.14034

[16] S. Kebekus and T. Peternell, A refinement of Stein factorization and deformations of surjective morphisms, Asian J. Math. 12 (2008), 365–389. | Zbl 1162.14007

[17] J. Kollár and N. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), 299–338. | Zbl 0642.14008

[18] Z. Ran, Deformations of maps, In: “Algebraic Curves and Projective Geometry”, Trento, 1988, Vol. 1389, Lecture Notes in Math., Springer, Berlin, 1989, 246–253. | Zbl 0910.14023

[19] S. Tufféry, Déformations de courbes avec action de groupe, Forum Math. 5 (1993), 243–259. | Zbl 0809.14005

[20] M. Van Opstall, Moduli of products of curves, Arch. Math. (Basel) 84 (2005), 148–154. | Zbl 1064.14033

[21] M. Van Opstall, Stable degenerations of surfaces isogenous to a product of curves, Proc. Amer. Math. Soc. 134 (2006) 2801–2806 (electronic). | Zbl 1098.14024