@article{ASNSP_2010_5_9_4_785_0, author = {Catino, Giovanni and Ndiaye, Cheikh Birahim}, title = {Integral pinching results for manifolds with boundary}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {4}, year = {2010}, pages = {785-813}, zbl = {1246.53062}, mrnumber = {2789475}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2010_5_9_4_785_0} }

Catino, Giovanni; Ndiaye, Cheikh Birahim. Integral pinching results for manifolds with boundary. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 9 (2010) no. 4, pp. 785-813. http://www.numdam.org/item/ASNSP_2010_5_9_4_785_0/

[1] “Einstein Manifolds”, Springer Verlag, Berlin, 1987. | MR 867684 | Zbl 0613.53001

,[2] “The Functional Determinant”, Global Analysis Research Center, Lecture Notes Series, Vol. 4, Seoul National University, 1993. | MR 1325463 | Zbl 0827.58057

,[3] Differential operators canonically associated to a conformal structure, Math. Scand. 57 (1985), 293–345. | MR 832360 | Zbl 0596.53009

,[4] Explicit functional determinants in four dimensions, Proc. Amer. Math. Soc. 113 (1991), 669–682. | MR 1050018 | Zbl 0762.47019

and ,[5] Les variétés riemanniennes $\frac{1}{4}$-pincées. Ann. Scuola Norm. Sup. Pisa 14 (1960), 161–170. | Numdam | MR 140054 | Zbl 0096.15502

,[6] Classification of manifolds with weakly $\frac{1}{4}$-pinched curvatures, Acta Math. 200 (2008), 1–13. | MR 2386107 | Zbl 1157.53020

and ,[7] Manifolds with positive curvature operator are space-forms, Ann. of Math. 167 (2008) 1079–1097. | MR 2415394 | Zbl 1185.53073

and ,[8] The Dirichlet problem for nonlinear second order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261–301. | MR 806416 | Zbl 0654.35031

, and ,[9] Conformal deformations of integral pinched 3-manifolds, Adv. Math. 223 (2010), 393–404. | MR 2565533 | Zbl 1182.53040

and ,[10] A sphere theorem on locally conformally flat even–dimensional manifolds, 2008, preprint. | MR 2820403 | Zbl 1226.53035

, and ,[11] Local estimates for some fully nonlinear elliptic equations, Int. Math. Res. Not. 55 (2005), 3403–3425. | MR 2204639 | Zbl 1159.35343

,[12] Conformal deformation on manifolds with boundary, Geom. Funct. Anal. 19 (2009), 1024–1064. | MR 2570314

,[13] The zeta functional determinants on manifolds with boundary. I. The formula, J. Funct. Anal. 147 (1997), 327–362. | MR 1454485 | Zbl 0914.58039

and ,[14] The zeta functional determinants on manifolds with boundary. II. Extremal metrics and compactness of isospectral set, J. Funct. Anal. 147 (1997), 363–399. | MR 1454486 | Zbl 0914.58040

and ,[15] A conformally invariant sphere theorem in four dimensions, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 105–143. | Numdam | MR 2031200 | Zbl 1066.53079

, and ,[16] On a fourth order curvature invariant, In: “Comtemporary Mathematics”, Vol. 237, Spectral Problems in Geometry and Arithmetic, Ed. T. Branson, AMS, 1999, 9–28. | MR 1710786

and ,[17] Existence of conformal metrics with constant $Q$-curvature, Ann. of Math. 168 (2008), 813–858. | MR 2456884 | Zbl 1186.53050

and ,[18] The Yamabe problem on manifolds with boundary, J. Differential Geom. 35 (1992), 21–84. | MR 1152225 | Zbl 0771.53017

,[19] Classical solutions of fully nonlinear, convex, second-order elliptic equations. Comm. Pure Appl. Math. 35 (1982), 333–363. | MR 649348 | Zbl 0469.35022

,[20] $Q$-curvature and Poincaré metrics, Math. Res. Lett. 9 (2002), 139–151. | MR 1909634 | Zbl 1016.53031

and ,[21] Conformal invariants, In: “Élie Cartan et les mathématiques d’aujourd’hui”, Asterisque, 1985, 95–116. | MR 837196 | Zbl 0602.53007

and ,[22] Three manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255–306. | MR 664497 | Zbl 0504.53034

,[23] On the ${\sigma}_{2}$-scalar curvature, J. Differential Geom. 84 (2010), 45–86. | MR 2629509

, and ,[24] “Elliptic Partial Differential Equations of Second Order”, 2nd edition, Springer-Verlag, 1983. | MR 737190

and ,[25] Conformally invariant powers of the Laplacian, I: existence, J. London Math. Soc. 46 (1992), 557–565. | MR 1190438 | Zbl 0726.53010

, , and ,[26] A fully nonlinear equation on four-manifolds with positive scalar curvature, J. Differential Geom. 63 (2003), 131–154. | MR 2015262 | Zbl 1070.53018

and ,[27] Über Riemannsche Mannigfaltigkeiten mit nach oben beschränkter Krümmung. Ann. Mat. Pura Appl. 60 (1962), 49–59. | MR 157321 | Zbl 0112.13603

,[28] Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), 75–108. | MR 688919

,[29] Linear oblique derivative problems for the uniformly elliptic Hamilton-Jacobi-Bellman equation, Math. Z. 191 (1986), 11–15. | MR 812598 | Zbl 0593.35046

and ,[30] A sharp characterization of the smooth 4-sphere in curvature terms, Comm. Anal. Geom. 6 (1998), 21–65. | MR 1619838 | Zbl 0966.53022

,[31] Conformal metrics with constant $Q$-curvature for manifolds with boundary, Comm. Anal. Geom. 16 (2008), 1049–1124. | MR 2471367 | Zbl 1163.53324

,[32] Constant $T$-curvature conformal metric on 4-manifolds with boundary, Pacific J. Math. 240 (2009), 151–184. | Zbl 1173.35009

,[33] A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), 3 pages. | Zbl 1145.53053

,[34] Essential unitarization of symplectics and applications to field quantization, J. Funct. Anal. 48 (1982), 310–359. | Zbl 0499.47025

,[35] A contribution to differential geometry in the large, Ann. of Math. 54 (1951), 38–55. | Zbl 0043.37202

,[36] Conformal geometry, contact geometry, and the calculus of variations, Duke Math. J. 101 (2000), 283–316. | Zbl 0990.53035

,[37] On Ricci deformation of a Riemannian metric on manifold with boundary, Pacific J. Math. 173 (1996), 203–221. | Zbl 0867.53031

,[38] Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251–275. | Zbl 0136.17701

,