Extremal discs in almost complex spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 9 (2010) no. 4, pp. 759-783.

We give a necessary condition for the existence of extremal pseudoholomorphic discs on some domains in ( 2n ,J) where J is a small almost complex deformation of the standard complex structure.

Classification: 32F45, 32G05, 32H99, 53C15
Gaussier, Hervé 1; Joo, Jae-Cheon 1

1 Université Joseph Fourier, 100 rue des Maths, 38402 Saint Martin d’Hères, France
@article{ASNSP_2010_5_9_4_759_0,
     author = {Gaussier, Herv\'e and Joo, Jae-Cheon},
     title = {Extremal discs in almost complex spaces},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {759--783},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 9},
     number = {4},
     year = {2010},
     mrnumber = {2789474},
     zbl = {1209.32003},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2010_5_9_4_759_0/}
}
TY  - JOUR
AU  - Gaussier, Hervé
AU  - Joo, Jae-Cheon
TI  - Extremal discs in almost complex spaces
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2010
SP  - 759
EP  - 783
VL  - 9
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2010_5_9_4_759_0/
LA  - en
ID  - ASNSP_2010_5_9_4_759_0
ER  - 
%0 Journal Article
%A Gaussier, Hervé
%A Joo, Jae-Cheon
%T Extremal discs in almost complex spaces
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2010
%P 759-783
%V 9
%N 4
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2010_5_9_4_759_0/
%G en
%F ASNSP_2010_5_9_4_759_0
Gaussier, Hervé; Joo, Jae-Cheon. Extremal discs in almost complex spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 9 (2010) no. 4, pp. 759-783. http://www.numdam.org/item/ASNSP_2010_5_9_4_759_0/

[1] N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235–249. | MR | Zbl

[2] M. Audin and J. Lafontaine, “Holomorphic Curves in Symplectic Geometry”, Progr. Math., Vol. 117, Birkhäuser, Basel, 1994. | MR | Zbl

[3] J. Bland and T. Duchamp, Moduli for pointed convex domains, Invent. Math. 104 (1991), 61–112. | EuDML | MR | Zbl

[4] D. Burns and S. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Amer. Math. Soc. 7 (1994), 661–676. | MR | Zbl

[5] Y. J. Choe, The Kobayashi geometry of Lee’s model of dimension 6, preprint.

[6] B. Coupet, H. Gaussier and A. Sukhov, Fefferman’s mapping theorem on almost complex manifolds in complex dimension two, Math. Z. 250 (2005), 59–90. | MR | Zbl

[7] B. Coupet, H. Gaussier and A. Sukhov, Riemann maps in almost complex manifolds, Ann. Scuola Norm. Super. Pisa Cl. Sci. (5) 2 (2003), 761–785. | EuDML | Numdam | MR | Zbl

[8] H. Gaussier and A. Sukhov, On the geometry of model almost complex manifolds with boundary, Math. Z. 254 (2006), 567–589. | MR | Zbl

[9] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347. | EuDML | MR | Zbl

[10] P. Hartman and A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math. 75 (1953), 449–476. | MR | Zbl

[11] S. Ishihara and K. Yano, “Tangent and Cotangent Bundles: Differential Geometry”, Pure and Applied Mathematics, No. 16, Marcel Dekker, Inc., New York, 1973. | MR | Zbl

[12] S. Ivashkovich and J. P. Rosay, Boundary Values and Boundary Uniqueness of J-Holomorphic Mappings, arXiv:0902.4800. | MR | Zbl

[13] K.-H. Lee, Strongly pseudoconvex homogeneous domains in almost complex manifolds, J. Reine Angew. Math. 623 (2008), 123–160. | MR | Zbl

[14] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, (French) [The Kobayashi metric and the representation of domains on the ball] Bull. Soc. Math. France 109 (1981), 427–474. | EuDML | Numdam | MR | Zbl

[15] L. Lempert, A precise result on the boundary regularity of biholomorphic mappings, Math. Z. 193 (1986), 559–579. | EuDML | MR | Zbl

[16] L. Lempert, Holomorphic invariants, normal forms, and the moduli space of convex domains, Ann. of Math. 128 (1988), 43–78. | MR | Zbl

[17] L. Lempert and R. Szöke, The tangent bundle of an almost complex manifold, Canad. Math. Bull. 44 (2001), 70–79. | MR | Zbl

[18] D. Mcduff and D. Salamon, J-holomorphic Curves and Symplectic Topology”, Amer. Math. Soc., Coll. Publ., Vol. 52, 2004. | MR | Zbl

[19] M. -Y. Pang, Smoothness of the Kobayashi metric of nonconvex domains, Internat. J. Math. 4 (1993), 953–987. | MR | Zbl

[20] G. Patrizio, Real and complex Monge Ampère equations and the geometry of strictly convex domains, Publ. Res. Inst. Math. Sci. 20 (1984), 867–875. | MR | Zbl

[21] E. A. Poletsky, The Euler Lagrange equations for extremal holomorphic mappings of the unit disk, Michigan Math. J. 30 (1983), 317–333. | MR

[22] A. Spiro, Total reality of conormal bundles of hypersurfaces in almost complex manifolds, Int. J. Geom. Methods Mod. Phys. 3 (2006), 1255–1262. | MR | Zbl

[23] A. Spiro and A. Sukhov, An existence theorem for stationary discs in almost complex manifolds, J. Math. Anal. Appl. 327 (2007), 269–286. | MR | Zbl

[24] A. Tumanov, Extremal discs and the regularity of CR mappings in higher codimension, Amer. J. Math. 123 (2001), 445–473. | MR | Zbl

[25] I. N. Vekua, “Generalized Analytic Functions”, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1962. | MR