We define rectifiable sets in the Heisenberg groups as countable unions of Lipschitz images of subsets of a Euclidean space, in the case of low-dimensional sets, or as countable unions of subsets of intrinsic surfaces, in the case of low-codimensional sets. We characterize both low-dimensional rectifiable sets and low codimensional rectifiable sets with positive lower density, in terms of almost everywhere existence of approximate tangent subgroups or of tangent measures.
Mattila, Pertti 1 ; Serapioni, Raul 2 ; Serra Cassano, Francesco 2
@article{ASNSP_2010_5_9_4_687_0,
author = {Mattila, Pertti and Serapioni, Raul and Serra Cassano, Francesco},
title = {Characterizations of intrinsic rectifiability in {Heisenberg} groups},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {687--723},
year = {2010},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 9},
number = {4},
mrnumber = {2789472},
zbl = {1229.28004},
language = {en},
url = {https://www.numdam.org/item/ASNSP_2010_5_9_4_687_0/}
}
TY - JOUR AU - Mattila, Pertti AU - Serapioni, Raul AU - Serra Cassano, Francesco TI - Characterizations of intrinsic rectifiability in Heisenberg groups JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 687 EP - 723 VL - 9 IS - 4 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2010_5_9_4_687_0/ LA - en ID - ASNSP_2010_5_9_4_687_0 ER -
%0 Journal Article %A Mattila, Pertti %A Serapioni, Raul %A Serra Cassano, Francesco %T Characterizations of intrinsic rectifiability in Heisenberg groups %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 687-723 %V 9 %N 4 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2010_5_9_4_687_0/ %G en %F ASNSP_2010_5_9_4_687_0
Mattila, Pertti; Serapioni, Raul; Serra Cassano, Francesco. Characterizations of intrinsic rectifiability in Heisenberg groups. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 4, pp. 687-723. https://www.numdam.org/item/ASNSP_2010_5_9_4_687_0/
[1] , and , “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, Oxford University Press, 2000. | MR | Zbl
[2] and , Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), 527–555. | MR | Zbl
[3] , and , Rectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplane, J. Geom. Anal. 19 (2009), 509–540. | MR | Zbl
[4] , and , Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal. 16 (2006), 187–232. | MR | Zbl
[5] and , Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs, Calc. Var. Partial Differential Equations, 35 (2009), 17–49. | MR | Zbl
[6] and , Rectifiability and Lipschitz extensions into the Heisenberg group, Math. Z. 263 (2009), 673–683. | MR | Zbl
[7] , and , Comparison of Hausdorff measures with respect to the Heisenberg metric, Publ. Mat. 47 (2003), 237–259. | MR | EuDML | Zbl
[8] , and , “Stratified Lie Groups and Potential Theory for their Sub–Laplacians”, Springer Monographs in Mathematics, Springer-Verlag, 2007. | MR | Zbl
[9] , , and , “An Introduction to the Heisenberg Group and the sub-Riemannian Isoperimetric Problem”, Birkhäuser, 2007. | MR | Zbl
[10] and , Differentiating maps into and the geometry of functions, Ann. of Math. 171 (2010), 1347–1385. | MR | Zbl
[11] and , Implicit function theorem in Carnot Carathéodory spaces, Commun. Contemp. Math. 8, (2006), 253–293. | MR | Zbl
[12] , “Geometric Measure Theory”, Springer-Verlag, 1969. | MR | Zbl
[13] and , “Hardy spaces in Homogeneous Groups”, Princeton University Press, 1982.
[14] , and , Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479–531. | MR | Zbl
[15] , and , On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal. 13 (2003), 421–466. | MR | Zbl
[16] , and , Regular hypersurfaces, intrinsic perimeter and implicit function theorem, Comm. Anal. Geom. 11 (2003), 909–944. | MR | Zbl
[17] , and , Regular submanifolds, graphs and area formula in Heisenberg Groups, Adv. Math. 211 (2007), 152–203. | MR | Zbl
[18] , and , Differentiability of intrinsic Lipschitz functions within Heisenberg groups, J. Geom. Anal. DOI 10:1007/s12220-010-9178. | MR
[19] , Carnot-Carathéodory spaces seen from within, In: “Subriemannian Geometry”, Progress in Mathematics, Vol. 144, A. Bellaiche and J. Risler (eds.), Birkhäuser Verlag, Basel, 1996. | MR | Zbl
[20] and , Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3 (2004), 871–896. | MR | EuDML | Zbl | Numdam
[21] , “Elements of Geometric Measure Theory on Sub-Riemannion groups”, Edizioni della Normale, Pisa, 2002. | MR
[22] , Contact equations, Lipschitz extensions and isoperimetric inequalities, preprint http://cvgmt.sns.it/cgi/get.cgi/papers/maga/ (2009). | MR
[23] , “Geometry of Sets and Measures in Euclidean Spaces”, Cambridge University Press, 1995. | MR
[24] , Measures with unique tangent measures in metric groups, Math. Scand. 97 (2005), 298–308. | MR | Zbl
[25] , On Carnot-Carathèodory metrics, J. Differential Geom. 21 (1985), 35–45. | MR | Zbl
[26] , “A Tour of Sub-Riemannian Geometries, their Geodesics and Applications”, Mathematical Survey and Monographs, Vol. 91, American Mathematical Society, Providence RI, 2002. | MR
[27] , Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989), 1–60. | MR | Zbl
[28] , A notion of rectifiability modelled on Carnot groups, Indiana Univ. Math. J. 53 (2004), 49–81. | MR | Zbl
[29] , Geometry of Measures in : distribution, rectifiability and densities, Ann. of Math. 125 (1987), 537–643. | MR | Zbl
[30] , Counter example to the isodiametric inequality in H-type groups, preprint (2004).
[31] , “Lectures on Geometric Measure Theory”, Proceedings of the Centre for Mathematical Analysis, Australian National University, Vol. 3, 1983. | MR | Zbl
[32] , “Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals”, Princeton University Press, Princeton, 1993. | MR | Zbl
[33] , and , “Analysis and Geometry on Groups”, Cambridge University Press, Cambridge, 1992. | MR | Zbl
[34] and , Lipschitz extensions into jet space Carnot group, Math. Res. Lett., to appear. | MR | Zbl






