Intrinsic deformation theory of CR structures
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 9 (2010) no. 3, p. 459-494
Let (V,ξ) be a contact manifold and let J be a strictly pseudoconvex CR structure of hypersurface type on (V,ξ); starting only from these data, we define and we investigate a Differential Graded Lie Algebra which governs the deformation theory of J.
Classification:  32H02,  32H35
@article{ASNSP_2010_5_9_3_459_0,
     author = {De Bartolomeis, Paolo and Meylan, Francine},
     title = {Intrinsic deformation theory of $CR$ structures},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 9},
     number = {3},
     year = {2010},
     pages = {459-494},
     zbl = {1206.32015},
     mrnumber = {2722651},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2010_5_9_3_459_0}
}
De Bartolomeis, Paolo; Meylan, Francine. Intrinsic deformation theory of $CR$ structures. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 9 (2010) no. 3, pp. 459-494. http://www.numdam.org/item/ASNSP_2010_5_9_3_459_0/

[1] L. Boutet De Monvel, Integration des equations de Cauchy-Riemann induites formelles, Seminaire Goulaic-Lions-Schwartz 1974-75, Centre Math. Ecole Polytechnique, Paris, 1975. | MR 409893 | Zbl 0317.58003

[2] P. De Bartolomeis “Symplectic and Holomorphic Theory in Kähler Geometry”, XIII Escola de geometria diferencial, Sao Paulo, 2004.

[3] P. De Bartolomeis, Symplectic deformations of Kähler manifolds, J. Symplectic Geom. 3 (2005), 341–355. | MR 2198780 | Zbl 1119.58011

[4] K. Kodaira and J. Morrow, “Complex Manifolds”, Holt, Rinehart and Winston, Inc., 1971. | MR 302937 | Zbl 0325.32001

[5] D. Mcduff and D. Salamon, “Introduction to Symplectic Topology”, Clarendon Press, Oxford, 1995. | MR 1373431 | Zbl 0844.58029

[6] S. M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), 53–68. | MR 463482 | Zbl 0348.32005