Geometry of invariant domains in complex semi-simple Lie groups
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 8 (2009) no. 3, p. 509-541

We investigate the joint action of two real forms of a semi-simple complex Lie group U by left and right multiplication. After analyzing the orbit structure, we study the CR structure of closed orbits. The main results are an explicit formula of the Levi form of closed orbits and the determination of the Levi cone of generic orbits. Finally, we apply these results to prove q-completeness of certain invariant domains in U .

Classification:  22E46,  32V40
@article{ASNSP_2009_5_8_3_509_0,
     author = {Miebach, Christian},
     title = {Geometry of invariant domains in complex semi-simple Lie groups},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 8},
     number = {3},
     year = {2009},
     pages = {509-541},
     zbl = {1184.22006},
     mrnumber = {2581425},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2009_5_8_3_509_0}
}
Miebach, Christian. Geometry of invariant domains in complex semi-simple Lie groups. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 8 (2009) no. 3, pp. 509-541. http://www.numdam.org/item/ASNSP_2009_5_8_3_509_0/

[1] A. Andreotti and H. Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193–259. | Numdam | MR 150342 | Zbl 0106.05501

[2] H. Azad and J.-J. Loeb, Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces, Indag. Math. (N.S.) 3 (1992), 365–375. | MR 1201231 | Zbl 0777.32008

[3] M. Salah Baouendi, P. Ebenfelt and L. Preiss Rothschild, “Real Submanifolds in Complex Space and their Mappings”, Princeton Mathematical Series, Vol. 47, Princeton University Press, Princeton, NJ, 1999. | MR 1668103 | Zbl 0944.32040

[4] A. Boggess, “CR Manifolds and the Tangential Cauchy-Riemann complex”, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1991. | MR 1211412 | Zbl 0760.32001

[5] R. J. Bremigan, Invariant analytic domains in complex semisimple groups, Transform. Groups 1 (1996), 279–305. | MR 1424446 | Zbl 0867.22004

[6] C. Chevalley, “Theory of Lie Groups. I”, Princeton University Press, Princeton, N. J., 1946 [Eighth Printing, 1970]. | MR 82628 | Zbl 0063.00842

[7] J.-P. Demailly, “Complex Analytic and Algebraic Geometry”, available at http://www-fourier.ujf-grenoble.fr/ demailly/books.html.

[8] F. Docquier and H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94–123. | MR 148939 | Zbl 0095.28004

[9] M. G. Eastwood and G. Vigna Suria, Cohomologically complete and pseudoconvex domains, Comment. Math. Helv. 55 (1980), 413–426. | MR 593056 | Zbl 0464.32010

[10] G. Fels and L. Geatti, Geometry of biinvariant subsets of complex semisimple Lie groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 329–356. | Numdam | MR 1631593 | Zbl 0922.32011

[11] M. Flensted-Jensen, Spherical functions of a real semisimple Lie group. A method of reduction to the complex case, J. Funct. Anal. 30 (1978), 106–146. | MR 513481 | Zbl 0419.22019

[12] J. Hilgert and K.-H. Neeb, “Lie Semigroups and their Applications”, Lecture Notes in Mathematics, Vol. 1552, Springer-Verlag, Berlin, 1993. | MR 1317811 | Zbl 0807.22001

[13] P. Heinzner and G. W. Schwarz, Cartan decomposition of the moment map, Math. Ann. 337 (2007), 197–232. | MR 2262782 | Zbl 1110.32008

[14] J. E. Humphreys, “Conjugacy Classes in Semisimple Algebraic Groups”, Mathematical Surveys and Monographs, Vol. 43, American Mathematical Society, Providence, RI, 1995. | MR 1343976 | Zbl 0834.20048

[15] L. Kaup, “Vorlesungen über Torische Varietäten”, Konstanzer Schriften in Mathematik und Informatik, Nr. 130, Fassung vom Herbst 2001.

[16] S. Kobayashi and K. Nomizu, “Foundations of Differential Geometry. Vol I”, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. | MR 152974 | Zbl 0119.37502

[17] A. W. Knapp, “Lie Groups Beyond an Introduction”, second ed., Progress in Mathematics, Vol. 140, Birkhäuser Boston Inc., Boston, MA, 2002. | MR 1920389 | Zbl 1075.22501

[18] M. Lassalle, Sur la transformation de Fourier-Laurent dans un groupe analytique complexe réductif, Ann. Inst. Fourier (Grenoble) 28 (1978), 115–138. | Numdam | MR 500919 | Zbl 0334.32028

[19] T. Matsuki, Double coset decompositions of reductive Lie groups arising from two involutions, J. Algebra 197 (1997), 49–91. | MR 1480777 | Zbl 0887.22009

[20] T. Matsuki, Classification of two involutions on compact semisimple Lie groups and root systems, J. Lie Theory 12 (2002), 41–68. | MR 1885036 | Zbl 0998.22004

[21] C. Miebach, Geometry of invariant domains in complex semi-simple Lie groups, Dissertation, Bochum, 2007.

[22] K.-H. Neeb, Invariant convex sets and functions in Lie algebras, Semigroup Forum 53 (1996), 230–261. | MR 1400650 | Zbl 0873.17009

[23] K.-H. Neeb, On the complex and convex geometry of Ol’shanskiĭsemigroups, Ann. Inst. Fourier (Grenoble) 48 (1998), 149–203. | MR 1614894 | Zbl 0901.22003

[24] K.-H. Neeb, “Holomorphy and Convexity in Lie Theory”, de Gruyter Expositions in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2000. | MR 1740617 | Zbl 0936.22001

[25] R. S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295–323. | MR 126506 | Zbl 0103.01802

[26] R. Steinberg, “Endomorphisms of Linear Algebraic Groups”, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. | MR 230728 | Zbl 0164.02902

[27] È. B. Vinberg (ed.), “Lie Groups and Lie Algebras, III”, Encyclopaedia of Mathematical Sciences, Vol. 41, Springer-Verlag, Berlin, 1994. | Zbl 0797.22001