Singularities of Maxwell's system in non-hilbertian Sobolev spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 7 (2008) no. 3, p. 455-482
We study the regularity of the solution of the regularized electric Maxwell problem in a polygonal domain with data in L p (Ω) 2 . Using a duality method, we prove a decomposition of the solution into a regular part in the non-Hilbertian Sobolev space W 2,p (Ω) 2 and an explicit singular one.
Classification:  35A20,  35Q60,  78A25
@article{ASNSP_2008_5_7_3_455_0,
     author = {Chikouche, Wided and Nicaise, Serge},
     title = {Singularities of Maxwell's system in non-hilbertian Sobolev spaces},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 7},
     number = {3},
     year = {2008},
     pages = {455-482},
     zbl = {1183.35260},
     mrnumber = {2466437},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2008_5_7_3_455_0}
}
Chikouche, Wided; Nicaise, Serge. Singularities of Maxwell's system in non-hilbertian Sobolev spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 7 (2008) no. 3, pp. 455-482. http://www.numdam.org/item/ASNSP_2008_5_7_3_455_0/

[1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general conditions II, Comm. Pure Appl. Math. 17 (1964), 35-92. | MR 162050 | Zbl 0123.28706

[2] A. Aibeche, W. Chikouche and S. Nicaise, l p regularity of transmission problems in dihedral domains, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10-B (2007), 663-660. | MR 2351535 | Zbl 1178.47005

[3] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains, Math. Methods Appl. Sci. 21 (1998), 823-864. | MR 1626990 | Zbl 0914.35094

[4] T. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges, Math. Methods Appl. Sci. 21 (1998), 519-549. | MR 1615426 | Zbl 0911.65107

[5] F. Assous and P. Ciarlet, Une caractérisation de l’orthogonal de Δ(H 2 (Ω)H 0 1 (Ω)) dans L 2 (Ω), C. R. Acad. Sc. Paris, Série I 325 (1997), 605-610. | MR 1473832 | Zbl 0892.35043

[6] F. Assous, P. Ciarlet Jr. and E. Sonnendrücker, Résolution of the Maxwell equations in a domain with reentrant corners, RAIRO Modél. Math. Anal. Numér. 32 (1998), 359-389. | Numdam | MR 1627135 | Zbl 0924.65111

[7] M. Birman and M. Z. Solomyak, L 2 theory of the Maxwell operator in arbitrary domains, Russian Math. Surveys 42 (1987), 75-96. | MR 933995 | Zbl 0653.35075

[8] M. S. Birman and M. Z. Solomyak, On the main singularities of the electric component of the electro-magnetic field in regions with screens, St. Petersburg Math. J. 5 (1993), 125-139. | MR 1220492 | Zbl 0804.35127

[9] P. Clément and P. Grisvard, Somme d’opérateurs et régularité L p dans les problèmes aux limites, C. R. Acad. Sci. Paris Série I, 314 (1992), 821-824. | MR 1166054 | Zbl 0773.47033

[10] M. Costabel A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains, Math. Methods Appl. Sci. 12 (1990), 365-368. | MR 1048563 | Zbl 0699.35028

[11] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains Arch. Ration. Mech. Anal. 151 (2000), 221-276. | MR 1753704 | Zbl 0968.35113

[12] G. Da Prato and P. Grisvard, Somme d'opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl., Ser. IX, 54 (1975), 305-387. | MR 442749 | Zbl 0315.47009

[13] G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z. 196 (1987), 189-201. | MR 910825 | Zbl 0615.47002

[14] V. Giraultand and P.-A. Raviart, “Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms”, Vol. 5, Springer Series in Computational Mathematics, Springer, Berlin, 1986. | Zbl 0585.65077

[15] P. Grisvard, “Elliptic Problems in Nonsmooth Domains”, Vol. 24, Monographs and Studies in Mathematics, Pitman, Boston-London-Melbourne, 1985. | MR 775683 | Zbl 0695.35060

[16] M. D. Gunzburger, A. J. Meir and J. S. Peterson, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary,incompressible magnetohydrodynamics, Math. Comp. 56 (1991), 523-563. | MR 1066834 | Zbl 0731.76094

[17] V. G. Maz'Ya and B. A. Plamenevskii, Estimates in L p and in Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary, Amer. Math. Soc. Transl. Ser. 2, 123 (1984), 1-56. | Zbl 0554.35035

[18] M. Moussaoui Espace H( curl ,div) dans un polygone plan, C. R. Acad. Sc. Paris, Série I, 322 (1996), 225-229. | Zbl 0852.46034

[19] S. Nicaise, “ Polygonal Interface Problems”, Vol. 39, Methoden und Verfahren der mathematischen Physik, Peter Lang GmbH, Europäischer Verlag der Wissenschaften, Frankfurt/M., 1993. | MR 1236228 | Zbl 0794.35040

[20] S. Nicaise, Edge elements on anisotropic meshes and approximation of the Maxwell equations, SIAM J. Numer. Anal. 39 (2001), 784-816(electronic). | MR 1860445 | Zbl 1001.65122

[21] C. Weber A local compactness theorem for Maxwell's equations, Math. Methods Appl. Sci. 2 (1980), 12-25. | MR 561375 | Zbl 0432.35032