A unified approach to the theory of separately holomorphic mappings
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 2, p. 181-240

We extend the theory of separately holomorphic mappings between complex analytic spaces. Our method is based on Poletsky theory of discs, Rosay theorem on holomorphic discs and our recent joint-work with Pflug on boundary cross theorems in dimension 1. It also relies on our new technique of conformal mappings and a generalization of Siciak’s relative extremal function. Our approach illustrates the unified character: “From local information to global extensions”. Moreover, it avoids systematically the use of the classical method of doubly orthogonal bases of Bergman type.

Classification:  32D15,  32D10
@article{ASNSP_2008_5_7_2_181_0,
     author = {Nguy\^en, Vi\^et-Anh},
     title = {A unified approach to the theory of separately holomorphic mappings},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 7},
     number = {2},
     year = {2008},
     pages = {181-240},
     zbl = {1241.32008},
     mrnumber = {2437026},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2008_5_7_2_181_0}
}
Nguyên, Viêt-Anh. A unified approach to the theory of separately holomorphic mappings. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 2, pp. 181-240. http://www.numdam.org/item/ASNSP_2008_5_7_2_181_0/

[1] R. A. Airapetyan and G. M. Henkin, Analytic continuation of CR-functions across the “edge of the wedge", Dokl. Akad. Nauk SSSR 259 (1981), 777-781 (Russian). English transl.: Soviet Math. Dokl. 24 (1981), 128-132. | MR 624846

[2] R. A. Airapetyan and G. M. Henkin, Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions. II, Mat. Sb. 127 (1985), 92-112, (Russian). English transl.: Math. USSR-Sb. 55 (1986), 99-111. | MR 791319 | Zbl 0593.32015

[3] O. Alehyane and J. M. Hecart, Propriété de stabilité de la fonction extrémale relative, Potential Anal. 21 (2004), 363-373. | MR 2081144 | Zbl 1064.32024

[4] K. Adachi, M. Suzuki and M. Yoshida, Continuation of holomorphic mappings with values in a complex Lie group, Pacific J. Math. 47 (1973), 1-4. | MR 352526 | Zbl 0237.32008

[5] O. Alehyane and A. Zeriahi, Une nouvelle version du théorème d'extension de Hartogs pour les applications séparément holomorphes entre espaces analytiques, Ann. Polon. Math. 76 (2001), 245-278. | MR 1841529 | Zbl 0979.32011

[6] E. Bedford, “The operator (dd c ) n on Complex Spaces”, Semin. P. Lelong - H. Skoda, Analyse, Années 1980/81, Lect. Notes Math. 919 (1982), 294-323. | MR 658889 | Zbl 0479.32006

[7] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40. | MR 674165 | Zbl 0547.32012

[8] S. Bernstein, “Sur l'Ordre de la Meilleure Approximation des Fonctions Continues par des Polynômes de Degré Donné”, Bruxelles, 1912. | JFM 45.0633.03

[9] L. M. Drużkowski, A generalization of the Malgrange-Zerner theorem, Ann. Polon. Math. 38 (1980), 181-186. | MR 599243 | Zbl 0461.32004

[10] A. Edigarian, Analytic discs method in complex analysis, Diss. Math. 402 (2002), 56. | MR 1897580 | Zbl 0993.31003

[11] G. M. Goluzin, “ Geometric Theory of Functions of a Complex Variable”, (English), Providence, R. I.: American Mathematical Society (AMS). VI, 1969, p. 676. | MR 247039 | Zbl 0183.07502

[12] A. A. Gonchar, On analytic continuation from the “edge of the wedge" theorem, Ann. Acad. Sci. Fenn. Math. Diss. 10 (1985), 221-225. | MR 802482 | Zbl 0603.32008

[13] A. A. Gonchar, On Bogolyubov's “edge-of-the-wedge" theorem, Proc. Steklov Inst. Math. 228 (2000), 18-24. | MR 1782569 | Zbl 0988.32009

[14] F. Hartogs, Zur Theorie der analytischen Funktionen mehrer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann. 62 (1906), 1-88. | JFM 37.0444.01 | MR 1511365

[15] B. Jöricke, The two-constants theorem for functions of several complex variables, (Russian), Math. Nachr. 107 (1982), 17-52. | MR 695734 | Zbl 0526.32003

[16] B. Josefson, On the equivalence between polar and globally polar sets for plurisubharmonic functions on n , Ark. Mat. 16 (1978), 109-115. | MR 590078 | Zbl 0383.31003

[17] S. M. Ivashkovich, The Hartogs phenomenon for holomorphically convex Kähler manifolds, Math. USSR-Izv. 29 (1997), 225-232. | Zbl 0618.32011

[18] M. Jarnicki and P. Pflug, “Extension of Holomorphic Functions”, de Gruyter Expositions in Mathematics n. 34, Walter de Gruyter, 2000. | MR 1797263 | Zbl 0976.32007

[19] M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis-revisited, Dissertationes Math. (Rozprawy Math.) 430 (2005). | MR 2167637 | Zbl 1085.32005

[20] M. Klimek, “Pluripotential Theory”, London Mathematical society monographs, Oxford Univ. Press., n. 6, 1991. | MR 1150978 | Zbl 0742.31001

[21] H. Komatsu, A local version of Bochner's tube theorem, J. Fac. Sci., Univ. Tokyo, Sect. I A 19 (1972), 201-214. | MR 316749 | Zbl 0239.32012

[22] F. Lárusson and R. Sigurdsson, Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angew. Math. 501 (1998), 1-39. | MR 1637837 | Zbl 0901.31004

[23] Nguyên Thanh Vân, Separate analyticity and related subjects, Vietnam J. Math. 25 (1997), 81-90. | MR 1681531 | Zbl 0898.32002

[24] Nguyên Thanh Vân, Note on doubly orthogonal system of Bergman, Linear Topological Spaces and Complex Analysis 3 (1997), 157-159. | MR 1632495 | Zbl 0910.46009

[25] Nguyên Thanh Vân and A. Zeriahi, Familles de polynômes presque partout bornées, Bull. Sci. Math. 107 (1983), 81-89. | MR 699992 | Zbl 0523.32011

[26] Nguyên Thanh Vân and A. Zeriahi, Une extension du théorème de Hartogs sur les fonctions séparément analytiques, In: “ Analyse Complexe Multivariable, Récents Développements”, A. Meril (ed.), EditEl, Rende, 1991, 183-194. | MR 1228880 | Zbl 0918.32001

[27] Nguyên Thanh Vân and A. Zeriahi, Systèmes doublement orthogonaux de fonctions holomorphes et applications, Banach Center Publ. 31 (1995), 281-297. | MR 1341397 | Zbl 0844.31003

[28] V.-A. Nguyên, A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (V) 4 (2005), 219-254. | Numdam | MR 2163556 | Zbl 1170.32306

[29] V.-A. Nguyên, Conical plurisubharmonic measure and new cross theorems, in preparation. | Zbl 1188.32009

[30] V.-A. Nguyên, Recent developments in the theory of separately holomorphic mappings, http://publications.ictp.it, IC/2007/074, 28 pages. | Zbl 1189.32005

[31] V.-A. Nguyên and P. Pflug, Boundary cross theorem in dimension 1 with singularities, Indiana Univ. Math. J., to appear. | MR 2504418 | Zbl 1171.32005

[32] V.-A. Nguyên and P. Pflug, Cross theorems with singularities. http://publications.ictp.it, IC/2007/073. | Zbl 1189.32006

[33] P. Pflug, Extension of separately holomorphic functions-a survey 1899-2001, Ann. Polon. Math. 80 (2003), 21-36. | MR 1972831 | Zbl 1023.32002

[34] P. Pflug and V.-A. Nguyên, A boundary cross theorem for separately holomorphic functions, Ann. Polon. Math. 84 (2004), 237-271. | MR 2110930 | Zbl 1068.32010

[35] P. Pflug and V.-A. Nguyên, Boundary cross theorem in dimension 1, Ann. Polon. Math. 90 (2007), 149-192. | MR 2289181 | Zbl 1122.32006

[36] P. Pflug and V.-A. Nguyên, Generalization of a theorem of Gonchar, Ark. Mat. 45 (2007), 105-122. | MR 2312956 | Zbl 1161.31005

[37] P. Pflug and V.-A. Nguyên, Envelope of holomorphy for boundary cross sets, Arch. Math. (Basel) 89 (2007), 326-338. | MR 2355152 | Zbl 1137.32008

[38] E. A. Poletsky, Plurisubharmonic functions as solutions of variational problems, In: “Several Complex Variables and Complex Geometry”, Proc. Summer Res. Inst., Santa Cruz/CA (USA) 1989, Proc. Symp. Pure Math. Vol. 52, Part 1, 1991, 163-171. | MR 1128523 | Zbl 0739.32015

[39] E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85-144. | MR 1218708 | Zbl 0811.32010

[40] T. Ransford, “Potential Theory in the Complex Plane”, London Mathematical Society Student Texts, n. 28, Cambridge: Univ. Press., 1995. | MR 1334766 | Zbl 0828.31001

[41] J. P. Rosay, Poletsky theory of disks on holomorphic manifolds, Indiana Univ. Math. J. 52 (2003), 157-169. | MR 1970025 | Zbl 1033.31006

[42] B. Shiffman, Extension of holomorphic maps into Hermitian manifolds, Math. Ann. 194 (1971), 249-258. | MR 291507 | Zbl 0219.32007

[43] B. Shiffman, Hartogs theorems for separately holomorphic mappings into complex spaces, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 89-94. | MR 1044622 | Zbl 0698.32008

[44] J. Siciak, Analyticity and separate analyticity of functions defined on lower dimensional subsets of n , Zeszyty Nauk. Univ. Jagiellon. Prace Mat. 13 (1969), 53-70. | MR 247132 | Zbl 0285.32011

[45] J. Siciak, Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of n , Ann. Polon. Math. 22 (1970), 145-171. | MR 252675 | Zbl 0185.15202

[46] V. P. Zahariuta, Separately analytic functions, generalizations of the Hartogs theorem and envelopes of holomorphy, Math. USSR-Sb. 30 (1976), 51-67. | Zbl 0381.32003

[47] M. Zerner, Quelques résultats sur le prolongement analytique des fonctions de variables complexes, Séminaire de Physique Mathématique.

[48] A. Zeriahi, Comportement asymptotique des systèmes doublement orthogonaux de Bergman: Une approche élémentaire, Vietnam J. Math. 30 (2002), 177-188. | MR 1934347 | Zbl 1026.32010

[49] H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193-233. | MR 224869 | Zbl 0158.33301