A priori estimates for weak solutions of complex Monge-Ampère equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 1, pp. 81-96.

Let X be a compact Kähler manifold and ω be a smooth closed form of bidegree (1,1) which is nonnegative and big. We study the classes χ (X,ω) of ω-plurisubharmonic functions of finite weighted Monge-Ampère energy. When the weight χ has fast growth at infinity, the corresponding functions are close to be bounded. We show that if a positive Radon measure is suitably dominated by the Monge-Ampère capacity, then it belongs to the range of the Monge-Ampère operator on some class χ (X,ω). This is done by establishing a priori estimates on the capacity of sublevel sets of the solutions. Our result extends those of U. Cegrell’s and S. Kolodziej’s and puts them into a unifying frame. It also gives a simple proof of S. T. Yau’s celebrated a priori 𝒞 0 -estimate.

Classification: 32W20, 32Q25, 32U05
@article{ASNSP_2008_5_7_1_81_0,
     author = {Benelkourchi, Slimane and Guedj, Vincent and Zeriahi, Ahmed},
     title = {A priori estimates for weak solutions of complex {Monge-Amp\`ere} equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {81--96},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 7},
     number = {1},
     year = {2008},
     mrnumber = {2413673},
     zbl = {1150.32011},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2008_5_7_1_81_0/}
}
TY  - JOUR
AU  - Benelkourchi, Slimane
AU  - Guedj, Vincent
AU  - Zeriahi, Ahmed
TI  - A priori estimates for weak solutions of complex Monge-Ampère equations
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2008
SP  - 81
EP  - 96
VL  - 7
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2008_5_7_1_81_0/
LA  - en
ID  - ASNSP_2008_5_7_1_81_0
ER  - 
%0 Journal Article
%A Benelkourchi, Slimane
%A Guedj, Vincent
%A Zeriahi, Ahmed
%T A priori estimates for weak solutions of complex Monge-Ampère equations
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2008
%P 81-96
%V 7
%N 1
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2008_5_7_1_81_0/
%G en
%F ASNSP_2008_5_7_1_81_0
Benelkourchi, Slimane; Guedj, Vincent; Zeriahi, Ahmed. A priori estimates for weak solutions of complex Monge-Ampère equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 1, pp. 81-96. http://www.numdam.org/item/ASNSP_2008_5_7_1_81_0/

[1] H. Alexander and B. A. Taylor, Comparison of two capacities in n , Math. Z. 186 (1984), 407-417. | EuDML | MR | Zbl

[2] T. Aubin, Équations du type Monge-Ampère sur les variétés Kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), 63-95. | MR | Zbl

[3] E. Bedford and B. A. Taylor A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40. | MR | Zbl

[4] Z. Blocki, On uniform estimate in Calabi-Yau theorem, Sci. China Ser. A 48 (2005) , suppl., 244-247. | MR | Zbl

[5] G. Burgos, J. Kramer and U. Kuhn, Arithmetic characteristic classes of automorphic vector bundles, Doc. Math. 10 (2005), 619-716. | EuDML | MR | Zbl

[6] E. Calabi, On Kähler manifolds with vanishing canonical class. Algebraic geometry and topology, In: “A symposium in Honor of S. Lefschetz”, Princeton Univ. Press, Princeton, N. J. (1957), 78-89. | MR | Zbl

[7] U. Cegrell, Pluricomplex energy, Acta Math. 180 (1998), 187-217. | MR | Zbl

[8] P. Eyssidieux, V. Guedj and A. Zeriahi, Singular Kähler-Einstein metrics, preprint arxiv math. AG/0603431. | MR | Zbl

[9] V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), 607-639. | MR | Zbl

[10] V. Guedj and A. Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), 442-482. | MR | Zbl

[11] S. Kolodziej, The range of the complex Monge-Ampère operator, Indiana Univ. Math. J. 43 (1994), 1321-1338. | MR | Zbl

[12] S. Kolodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), 69-117. | MR | Zbl

[13] S. Kolodziej, The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), 667-686. | MR | Zbl

[14] S. Kolodziej, “The Complex Monge-Ampère Equation and Pluripotential Theory”, Mem. Amer. Math. Soc., Vol. 178, 2005. | MR | Zbl

[15] U. Kuhn, Generalized arithmetic intersection numbers, J. Reine Angew. Math. 534 (2001), 209-236. | MR | Zbl

[16] J. Rainwater, A note on the preceding paper, Duke Math. J. 36 (1969), 799-800. | MR | Zbl

[17] T. Ransford, “Potential Theory in the Complex Plane”, London Mathematical Society Student Texts, Vol. 28, Cambridge University Press, Cambridge, 1995. | MR | Zbl

[18] G. Tian, “Canonical Metrics in Kähler Geometry”, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2000. | MR | Zbl

[19] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math. 31 (1978), 339-411. | MR | Zbl

[20] A. Zeriahi, Volume and capacity of sublevel sets of a Lelong class of psh functions, Indiana Univ. Math. J. 50 (2001), 671-703. | MR | Zbl