Persistence of Coron's solution in nearly critical problems
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 6 (2007) no. 2, p. 331-357

We consider the problem -Δu=u N+2 N-2+λ inΩεω,u>0inΩεω,u=0onΩεω, where Ω and ω are smooth bounded domains in N , N3, ε>0 and λ. We prove that if the size of the hole ε goes to zero and if, simultaneously, the parameter λ goes to zero at the appropriate rate, then the problem has a solution which blows up at the origin.

@article{ASNSP_2007_5_6_2_331_0,
     author = {Musso, Monica and Pistoia, Angela},
     title = {Persistence of Coron's solution in nearly critical problems},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 6},
     number = {2},
     year = {2007},
     pages = {331-357},
     zbl = {1147.35041},
     mrnumber = {2352522},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2007_5_6_2_331_0}
}
Musso, Monica; Pistoia, Angela. Persistence of Coron's solution in nearly critical problems. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 6 (2007) no. 2, pp. 331-357. http://www.numdam.org/item/ASNSP_2007_5_6_2_331_0/

[1] T. Aubin, Problemes isoperimetriques et espaces de Sobolev, J. Differential Geom. 11 (1976), 573-598. | MR 448404 | Zbl 0371.46011

[2] A. Bahri, “Critical Points at Infinity in Some Variational Problems”, Pitman Research Notes in Mathematics Series, Vol. 182, 1989, Longman. | MR 1019828 | Zbl 0676.58021

[3] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294. | MR 929280 | Zbl 0649.35033

[4] A. Bahri and Y. Li, O. Rey, On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995), 67-93. | MR 1384837 | Zbl 0814.35032

[5] M. Ben Ayed, K. El Mehdi, M. Grossi and O. Rey, A nonexistence result of single peaked solutions to a supercritical nonlinear problem, Commun. Contemp. Math. 5 (2003), 179-195. | MR 1966257 | Zbl 1066.35035

[6] G. Bianchi and H. Egnell, A note on the Sobolev inequality, J. Funct. Anal. 100 (1991), 18-24. | MR 1124290 | Zbl 0755.46014

[7] L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297. | MR 982351 | Zbl 0702.35085

[8] J. M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 209-212. | MR 762722 | Zbl 0569.35032

[9] E. N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc. 20 (1988), 600-602. | MR 980763 | Zbl 0646.35027

[10] E. N. Dancer, Domain variation for certain sets of solutions and applications, Topol. Methods Nonlin. Anal. 7 (1996), 95-113. | MR 1422007 | Zbl 0941.35030

[11] E. N. Dancer, Superlinear problems on domains with holes of asymptotic shape and exterior problems, Math. Z. 229 (1998), 475-491. | MR 1658565 | Zbl 0933.35068

[12] M. Del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem, Calc. Var. Partial Differential Equations 16 (2003), 113-145. | MR 1956850 | Zbl 1142.35421

[13] M. Del Pino, P. Felmer and M. Musso, Multi-peak solutions for super-critical elliptic problems in domains with small holes, J. Differential Equations 182 (2002), 511-540. | MR 1900333 | Zbl 1014.35028

[14] M. Del Pino, P. Felmer and M. Musso, Multi-bubble solutions for Slightly super-critial ellitpic problems in domains with symmetries, Bull. London Math. Soc. 35 (2003), 513-521. | MR 1979006 | Zbl 1109.35334

[15] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 159-174. | Numdam | MR 1096602 | Zbl 0729.35014

[16] J. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597. | MR 477445 | Zbl 0325.35038

[17] S. Khenissy and O. Rey, A criterion for existence of solutions to the supercritical Bahri-Coron's problem, Houston J. Math. 30 (2004), 587-613. | MR 2084920 | Zbl 1172.35390

[18] R. Lewandowski, Little holes and convergence of solutions of -Δu=u (N+2)/(N-2) , Nonlinear Anal. 14 (1990), 873-888. | MR 1055535 | Zbl 0713.35008

[19] G. Li, S. Yan and J. Yang, An elliptic problem with critical growth in domains with shrinking holes, J. Differential Equations 198 (2004), 275-300. | MR 2038582 | Zbl 1086.35046

[20] R. Molle and D. Passaseo, Positive solutions for slightly super-critical elliptic equations in contractible domains, C. R. Math. Acad. Sci. Paris 335 (2002), 459-462. | MR 1937113 | Zbl 1010.35043

[21] A. Pistoia and O. Rey, Multiplicity of solutions to the supercritical Bahri-Coron's problem in pierced domains, Adv. Differential Equations 11 (2006), 647-666. | MR 2238023 | Zbl 1166.35333

[22] S. I. Pohožaev, On the eigenfunctions of the equation Δu+λf(u)=0, (Russian) Dokl. Akad. Nauk 165 (1965), 36-39. | Zbl 0141.30202

[23] O. Rey, Proof of two conjectures of H. Brezis and L.A. Peletier, Manuscripta Math. 65 (1989), 19-37. | MR 1006624 | Zbl 0708.35032

[24] O. Rey, Sur un probléme variationnel non compact: l'effect de petits trous dans le domain, C.R. Acad. Sci. Paris 308 (1989), 349-352. | MR 992090 | Zbl 0686.35047

[25] O. Rey, Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations 4 (1991), 1155-1167. | MR 1133750 | Zbl 0830.35043

[26] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372. | MR 463908 | Zbl 0353.46018