The extended future tube conjecture for SO(1, 𝑛)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 1, p. 39-52
Let C be the open upper light cone in 1+n with respect to the Lorentz product. The connected linear Lorentz group SO (1,n) 0 acts on C and therefore diagonally on the N-fold product T N where T= 1+n +iC 1+n . We prove that the extended future tube SO (1,n)·T N is a domain of holomorphy.
Classification:  32A07,  32D05,  32M05
@article{ASNSP_2004_5_3_1_39_0,
     author = {Heinzner, Peter and Sch\"utzdeller, Patrick},
     title = {The extended future tube conjecture for SO(1, ${\it {n}}$)},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 3},
     number = {1},
     year = {2004},
     pages = {39-52},
     zbl = {1170.32300},
     mrnumber = {2064966},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2004_5_3_1_39_0}
}
Heinzner, Peter; Schützdeller, Patrick. The extended future tube conjecture for SO(1, ${\it {n}}$). Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 1, pp. 39-52. http://www.numdam.org/item/ASNSP_2004_5_3_1_39_0/

[B] R. Bremigan, Invariant analytic domains in complex semisimple groups, Transform. Groups 1 (1996), 279-305. | MR 1424446 | Zbl 0867.22004

[FK] J. Faraut - A. Koranyi, “Analysis on Symmetric Cones”, Oxford Press, Oxford, 1994. | MR 1446489 | Zbl 0841.43002

[HW] D. Hall - A. D. Wightman, A theorem on invariant analytic functions with applications to relativistic quantum field theory, Kgl. Danske Videnskap. Selkap, Mat.-Fys. Medd. 31 (1965) 1-14. | Zbl 0078.44302

[He1] P. Heinzner, Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), 631-662. | MR 1103041 | Zbl 0728.32010

[He2] P. Heinzner, The minimum principle from a Hamiltonian point of view, Doc. Math. J. 3 (1998), 1-14. | MR 1620612 | Zbl 0939.32021

[HeHuL] P. Heinzner - A. T. Huckleberry - F. Loose, Kählerian extensions of the symplectic reduction, J. reine angew. Math. 455 (1994), 123-140. | MR 1293876 | Zbl 0803.53042

[HeMP] P. Heinzner - L. Migliorini - M. Polito, Semistable quotients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 233-248. | Numdam | MR 1631577 | Zbl 0922.32017

[J] R. Jost, The general theory of quantized fields, In: “Lectures in applied mathematics”, vol. IV, 1965. | MR 177667 | Zbl 0127.19105

[Kr] H. Kraft, Geometrische Methoden in der Invariantentheorie, In: “Aspects of Mathematics”, Vieweg Verlag, 1984. | MR 768181 | Zbl 0569.14003

[N] R. Narasimhan, The Levi Problem for Complex Spaces II, Math. Ann. 146 (1962), 195-216. | MR 182747 | Zbl 0131.30801

[SV] A. G. Sergeev - V. S. Vladimirov, Complex analysis in the future tube, In: “Encyclopaedia of mathematical sciences” (Several complex variables II) vol. 8 (1994), 179-253. | Zbl 0787.32001

[StW] R. F. Streater - A. S. Wightman, “PCT spin statistics, and all that”, W. A. Benjamin, INC., 1964. | MR 161603 | Zbl 0135.44305

[W] A. S. Wightman, Quantum field theory and analytic functions of several complex variables, J. Indian Math. Soc. 24 (1960), 625-677. | MR 149854 | Zbl 0105.22101

[Z] X. Y. Zhou, A proof of the extended future tube conjecture, Izv. Math. 62 (1998), 201-213. | MR 1622270 | Zbl 0922.32007