Let be either the unit ball or the half ball let be a strictly positive and continuous function, and let and solve the following overdetermined problem:
@article{ASNSP_2003_5_2_4_787_0, author = {Blank, Ivan and Shahgholian, Henrik}, title = {Boundary regularity and compactness for overdetermined problems}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {787--802}, publisher = {Scuola normale superiore}, volume = {Ser. 5, 2}, number = {4}, year = {2003}, mrnumber = {2040643}, zbl = {1170.35484}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2003_5_2_4_787_0/} }
TY - JOUR AU - Blank, Ivan AU - Shahgholian, Henrik TI - Boundary regularity and compactness for overdetermined problems JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2003 SP - 787 EP - 802 VL - 2 IS - 4 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_2003_5_2_4_787_0/ LA - en ID - ASNSP_2003_5_2_4_787_0 ER -
%0 Journal Article %A Blank, Ivan %A Shahgholian, Henrik %T Boundary regularity and compactness for overdetermined problems %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2003 %P 787-802 %V 2 %N 4 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_2003_5_2_4_787_0/ %G en %F ASNSP_2003_5_2_4_787_0
Blank, Ivan; Shahgholian, Henrik. Boundary regularity and compactness for overdetermined problems. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 2 (2003) no. 4, pp. 787-802. http://www.numdam.org/item/ASNSP_2003_5_2_4_787_0/
[B] Sharp results for the regularity and stability of the free boundary in the obstacle problem, Indiana Univ. Math. J. 50 (2001), 1077-1112. | MR | Zbl
,[C1] The regularity of free boundaries in higher dimensions, Acta Math. 139 (1977), 155-184. | MR | Zbl
,[C2] Compactness methods in free boundary problems, Comm. Partial Differential Equations 5 (1980), 427-448. | MR | Zbl
,[C3] The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998), 383-402. | MR | Zbl
,[CKS] Regularity of a free boundary with application to the Pompeiu problem, Ann. of Math. 151 (2000), 269-292. | MR | Zbl
- - ,[F] “Variational Principles and Free Boundary Problems”, Wiley, 1982. | MR | Zbl
,[GT] “Elliptic Partial Differential Equations of Second Order”, 2nd ed., Springer-Verlag, 1983. | MR | Zbl
- ,[I] “Inverse Source Problems”, AMS Math. Surveys and Monographs 34, Providence, Rhode Island, 1990. | MR | Zbl
,[KN] Regularity in free boundary value problems, Ann. Scuola Norm. Sup. Pisa 4 (1977), 373-391. | Numdam | MR | Zbl
- ,[KS] On the optimal growth of functions with bounded Laplacian, Electron. J. Differential Equations 2000 (2000), 1-9. | MR | Zbl
- ,[KT] Free boundary regularity for harmonic measures and Poisson Kernels, Ann. of Math. 150 (1999), 369-454. | MR | Zbl
- ,[M] Potential theory for -densities and its applications to inverse problems of gravimetry, Theory and Practice of Gravitational and Magnetic Fields Interpretation in USSR, Naukova Dumka Press, Kiev, 1983, 188-197 (Russian).
,[R] Solution of the Plateau Problem for -dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1-92. | MR | Zbl
,[Sc] Some examples of singularities in a free boundary, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1977), 133-144. | Numdam | MR | Zbl
,[St] The inverse logarithmic potential problem for contact surface, Physics of the Solid Earth 10 (1974), 104-114 [translated from Russian].
,[SU] Regularity properties of a free boundary near contact points with the fixed boundary, Duke Univ. Math. J. 116 (2003), 1-34. | MR | Zbl
- ,[T] Doubling and flatness: geometry of measures, Notices Amer. Math. Soc. 44 (1997), 1087-1094. | MR | Zbl
,