Evolution of subsets of 2 and parabolic problem for the Levi equation
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 3-4, p. 757-784
@article{ASNSP_1997_4_25_3-4_757_0,
     author = {Slodkowski, Zbigniew and Tomassini, Giuseppe},
     title = {Evolution of subsets of $\mathbb {C}^2$ and parabolic problem for the Levi equation},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 25},
     number = {3-4},
     year = {1997},
     pages = {757-784},
     zbl = {1009.32008},
     mrnumber = {1655541},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1997_4_25_3-4_757_0}
}
Slodkowski, Zbigniew; Tomassini, Giuseppe. Evolution of subsets of $\mathbb {C}^2$ and parabolic problem for the Levi equation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 25 (1997) no. 3-4, pp. 757-784. http://www.numdam.org/item/ASNSP_1997_4_25_3-4_757_0/

[AS] L. Ambrosio - H.M. Soner, Level set approach to mean curvature flow in any codimension, J. Diff. Geom. 43 (1996), 693-737. | MR 1412682 | Zbl 0868.35046

[B] K.A. Brakke, The motion of a surface by its mean curvature, Princeton Univ. Press, Princeton, NJ, 1978. | MR 485012 | Zbl 0386.53047

[D] J.P. Demailly, Cohomology of q-convex spaces in top degrees, Math. Zeit. 204 (1990), 283-295. | MR 1055992 | Zbl 0682.32017

[ES] L.C. Evans - J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geometry 33, n. 4 (1991), 635-681. | MR 1100206 | Zbl 0726.53029

[GS] R. Gay - A. Sebbar, Division et extension dans l'algèbre A∞(Ω) d'un ouvert pseudoconvexe à bord lisse de Cn, Math. Z. 189 (1985), 421-447. | Zbl 0547.32009

[H] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom. 20 (1984), 237-266. | MR 772132 | Zbl 0556.53001

[LSU] O.A. Ladyzhenskaja - V.A. Solonnikov - N.N. Ural'Tseva, Linear and quasilinear equations ofparabolic type, Amer. Math. Soc., Providence, RI, 1968.

[S] N. Sibony, Some aspects of weakly pseudoconvex domains, "Several Complex Variables and Complex Geometry", Proc. of Symposia on Pure Math., 52, part I, 199-231. | MR 1128526 | Zbl 0747.32006

[Si] Y.T. Siu, Every Stein subvariety has a Stein neighbourhood, Inv. Math. 38 (1977) 89-100. | Zbl 0343.32014

[S1] Z. Slodkowski, Pseudoconvex classes of functions. II. Affine pseudoconvex classes on RN, Pac. J. Math. 141 (1990), 125-163. | MR 1028268 | Zbl 0693.31007

[ST1] Z. Slodkowski - G. Tomassini, Geometric properties of solutions of the Levi curvature equation in C2, J. Funct. Anal. 138 (1996), 188-212. | MR 1391635 | Zbl 0874.47023

[ST2] Z. Slodkowski - G. Tomassini, Levi equation and evolution of subsets of C2, Rend. Mat. Acc. Lincei s. 9, 7 (1996), 235-239. | MR 1454417 | Zbl 0888.32007

[W] J.B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18 (1968), 143-148. | MR 227465 | Zbl 0159.16002