Harmonic maps on planar lattices
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 25 (1997) no. 3-4, pp. 713-730.
@article{ASNSP_1997_4_25_3-4_713_0,
     author = {M\"uller, Stefan and Struwe, Michael and \v{S}ver\'ak, Vladimir},
     title = {Harmonic maps on planar lattices},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {713--730},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 25},
     number = {3-4},
     year = {1997},
     zbl = {1004.58007},
     mrnumber = {1655538},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1997_4_25_3-4_713_0/}
}
TY  - JOUR
AU  - Müller, Stefan
AU  - Struwe, Michael
AU  - Šverák, Vladimir
TI  - Harmonic maps on planar lattices
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1997
DA  - 1997///
SP  - 713
EP  - 730
VL  - Ser. 4, 25
IS  - 3-4
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_1997_4_25_3-4_713_0/
UR  - https://zbmath.org/?q=an%3A1004.58007
UR  - https://www.ams.org/mathscinet-getitem?mr=1655538
LA  - en
ID  - ASNSP_1997_4_25_3-4_713_0
ER  - 
%0 Journal Article
%A Müller, Stefan
%A Struwe, Michael
%A Šverák, Vladimir
%T Harmonic maps on planar lattices
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1997
%P 713-730
%V Ser. 4, 25
%N 3-4
%I Scuola normale superiore
%G en
%F ASNSP_1997_4_25_3-4_713_0
Müller, Stefan; Struwe, Michael; Šverák, Vladimir. Harmonic maps on planar lattices. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 25 (1997) no. 3-4, pp. 713-730. http://www.numdam.org/item/ASNSP_1997_4_25_3-4_713_0/

[1] F. Bethuel, Weak convergence of Palais-Smale sequences for some critical functionals, Calc. Var. 1 (1993), 267-310. | MR | Zbl

[2] F. Bethuel, On the singular set of stationary harmonic maps, Manusc. Math. 78 (1993), 417-443. | MR | Zbl

[3] R.R. Coifman - P.-L. Lions - Y. Meyer - S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286. | MR | Zbl

[4] D. Christodoulou - S. Tahvildar-Zadeh, On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math. 46 (1993), 1041-1091. | MR | Zbl

[5] L.C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rat. Mech. Anal. 116 (1991), 101-113. | MR | Zbl

[6] C. Fefferman - E.M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-193. | MR | Zbl

[7] A. Freire - S. Müller - M. Struwe, Weak Convergence of Wave Maps from (1 +2)-Dimensional Minkowski Space to Riemannian Manifolds, Invent. Math. (to appear). | MR | Zbl

[8] A. Freire - S. Müller - M. Struwe, Weak Compactness of Wave Maps and Harmonic Maps, preprint (1996).

[9] F. Hélein, Regularité des applications faiblement harmoniques entre une surface et une variteé Riemannienne, C. R. Acad. Sci. Paris Ser. I Math. 312 (1991), 591-596. | MR | Zbl

[10] P.L. Lions, The concentration compactness principle in the calculus of variations, the limit case, part II, Rev. Mat. Iberoam. 12 (1985), 45-121. | MR | Zbl

[11] S. Müller - M. Struwe, Global Existence of Wave Maps in 1 + 2 Dimensions for Finite Energy Data, Top. Methods Nonlinear Analysis, 7 (1996), 245-259. | MR | Zbl

[12] S. Müller - M. Struwe, Spatially Discrete Wave Maps in 1+2 Dimensions, in preparation.