Siegel's lemma, Padé approximations and jacobians
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 25 (1997) no. 1-2, pp. 155-178.
@article{ASNSP_1997_4_25_1-2_155_0,
     author = {Bombieri, Enrico and Cohen, Paula B.},
     title = {Siegel's lemma, {Pad\'e} approximations and jacobians},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {155--178},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 25},
     number = {1-2},
     year = {1997},
     zbl = {1073.11518},
     mrnumber = {1655513},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1997_4_25_1-2_155_0/}
}
TY  - JOUR
AU  - Bombieri, Enrico
AU  - Cohen, Paula B.
TI  - Siegel's lemma, Padé approximations and jacobians
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1997
DA  - 1997///
SP  - 155
EP  - 178
VL  - Ser. 4, 25
IS  - 1-2
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_1997_4_25_1-2_155_0/
UR  - https://zbmath.org/?q=an%3A1073.11518
UR  - https://www.ams.org/mathscinet-getitem?mr=1655513
LA  - en
ID  - ASNSP_1997_4_25_1-2_155_0
ER  - 
%0 Journal Article
%A Bombieri, Enrico
%A Cohen, Paula B.
%T Siegel's lemma, Padé approximations and jacobians
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1997
%P 155-178
%V Ser. 4, 25
%N 1-2
%I Scuola normale superiore
%G en
%F ASNSP_1997_4_25_1-2_155_0
Bombieri, Enrico; Cohen, Paula B. Siegel's lemma, Padé approximations and jacobians. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 25 (1997) no. 1-2, pp. 155-178. http://www.numdam.org/item/ASNSP_1997_4_25_1-2_155_0/

[1] A. Baker, Rational approximations to 3√2 and other algebraic numbers, Quart. J. Math. Oxford 15 (1964), 375-383. | Zbl

[2] E. Bombieri, On G-functions, in "Recent Progress in Analytic Number Theory ", H. Halberstam and C. Hooley (ed.), Academic Press, 1981, Vol. 2, 1-67. | MR | Zbl

[3] E. Bombieri, On Weil's "Théorème de Décomposition", Amer. J. Math. 105 (1983), 295-308. | MR | Zbl

[4] E. Bombieri - J. Vaaler, On Siegel's lemma, Invent. math. 73 (1983), 11-32; Addendum, ibid 75 (1984), 177. | MR | Zbl

[5] E. Bombieri - U. Zannier, Heights of algebraic points on subvarieties of abelian varieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV) 23 (1996), 779-792. | Numdam | MR | Zbl

[6] D.V. Chudnovsky - G.V. Chudnovsky, Padé approximations to solutions of linear differential equations and applications to diophantine analysis, Springer Lecture Notes in Math. 1052 (1984), 85-167. | MR | Zbl

[7] P. Debes, Quelques remarques sur un article de Bombieri concernant le Théorème de Décomposition de Weil, Amer. J. Math. 107 (1985), 39-44. | MR | Zbl

[8] P. Debes, G-fonctions et théorème d'irréductibilité de Hilbert, Acta Arithmetica XLVII (1986), 371-402. | MR | Zbl

[9] K. Mahler, Ein Beweis des Thue-Siegelschen Satzes über die Approximation algebraischen Zahlen für binomische Gleichungen, Math. Annalen 105 (1931), 267-276. | JFM | MR | Zbl

[10] D. Mumford, "Curves and Their Jacobians", The Univ. of Michigan Press, Ann Arbor,1976. | MR | Zbl

[11] J.-P. Serre, "Lectures on the Mordell-Weil theorem, Aspects of Mathematics", Vieweg & Sohn, Braunschweig, 1989. | MR | Zbl

[12] L. Szpiro - E. Ullmo - S. Zhang, Equidistribution des petits points, Invent. Math. 127 (1997), 337-347. | MR | Zbl

[1] N.H. Abel, Über die Integration der Differential-Formel ρdx/√R, wenn R und p ganze Funktionen sind, Journal für die reine und angew. Math. 1 (1826), 185-221. Also Sur l'intégration de la formule differentielle ρdx/√R, R et p étant des fonctions entieres, Oeuvres Complètes, Tome Prémier, Christiania 1881, 104.-144. | Zbl

[2] Y. Hellegouarch - D.L. Mcquillan - R. Paysant-Le Roux, Unités de certain sousanneaux des corps de fonctions algébriques, Acta Arith. XLVIII (1987), 9- 47. | MR | Zbl

[3] A. Schinzel, On some problems of the arithmetical theory of continued fractions II, Acta Arith. VII (1962), 287-298. | MR | Zbl