Imbedding vector fields in scalar parabolic Dirichlet BVP s
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Volume 22 (1995) no. 4, p. 737-749
@article{ASNSP_1995_4_22_4_737_0,
     author = {Pol\'a\v cik, Peter and Rybakowski, Krzysztof},
     title = {Imbedding vector fields in scalar parabolic Dirichlet $BVP\_s$},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 22},
     number = {4},
     year = {1995},
     pages = {737-749},
     zbl = {0852.35074},
     mrnumber = {1375317},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1995_4_22_4_737_0}
}
Poláčik, Peter; Rybakowski, Krzysztof. Imbedding vector fields in scalar parabolic Dirichlet $BVP_s$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Volume 22 (1995) no. 4, pp. 737-749. http://www.numdam.org/item/ASNSP_1995_4_22_4_737_0/

[BJS] L. Bers - F. John - M. Schechter, Partial differential equations, Interscience Publishers, New York, 1964. | MR 163043 | Zbl 0126.00207

[Da] E.N. Dancer, On the existence of two-dimensional invariant tori for scalar parabolic equations with time periodic coefficients, Annali Scuola Norm. Sup. Pisa 18 (1991), 456-471. | Numdam | MR 1145318 | Zbl 0779.35049

[Fi-P] B. Fiedler - P. POLÁčIK, Complicated dynamics of scalar reaction-diffusion equations with a nonlocal term, Proc. Royal Soc. Edinburgh Sect. A, 115 (1990), 167-192. | MR 1059652 | Zbl 0726.35060

[Ha1] J.K. Hale, Flows on centre manifolds for scalar functional differential equations, Proc. Royal Soc. Edinburgh Sect. A, 101 (1985), 193-201. | MR 824220 | Zbl 0582.34058

[Ha2] J.K. Hale, Local flows for functional differential equations, Contemp. Math., 56 (1986), 185-192. | MR 855090 | Zbl 0612.34066

[Ha3] J.K. Hale, Asymptotic behavior of dissipative systems, AMS Publications, Providence RI, 1988. | MR 941371 | Zbl 0642.58013

[Ha-R] J.K. Hale - G. Raugel, Convergence in gradient-like systems with applications to PDE, J. Applied Math. Physics (ZAMP), 43 (1992), 63-124. | MR 1149371 | Zbl 0751.58033

[He] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Vol. 840, Springer, New York, 1981. | MR 610244 | Zbl 0456.35001

[Fa-M] T. Faria - L. Magalhães, Realization of ordinary differential equations by retarded functional differential equations in neighborhoods of equilibrium points, preprint. | MR 1357382

[Po1] P. Polá, Complicated dynamics in scalar semilinear parabolic equations in higher space dimension, J. Differential Equations 89 (1991), 244-271. | MR 1091478 | Zbl 0738.35027

[Po2] P. Polá, Imbedding of any vector field in a scalar semilinear parabolic equation, Proc. Amer. Math Soc. 115 (1992), 1001-1008. | MR 1089411 | Zbl 0755.35046

[Po3] P. Polá, High-dimensional w-limit sets and chaos in scalar parabolic equations, J. Differential Equations, 119 (1995), 24-53. | MR 1334487 | Zbl 0830.35060

[Po4] P. Polá, Transversal and nontransversal intersections of stable and unstable manifolds in reaction diffusion equations on symmetric domains, Differential Integral Equations, 7 (1994), 1527-1545. | MR 1269669 | Zbl 0809.35041

[Ry1] K.P. Rybakowski, Realization of arbitrary vector fields on center manifolds of parabolic Dirichlet BVPs, J. Differential Equations, 114 (1994), 199-221. | MR 1302140 | Zbl 0807.35072

[Ry2] K.P. Rybakowski, Realization of arbitrary vector fields on invariant manifolds of delay equations, J. Differential Equations, 114 (1994), 222-231. | MR 1302141 | Zbl 0815.34064

[Ry3] K.P. Rybakowski, An abstract approach to smoothness of invariant manifolds, Appl. Anal. 49 (1993), 119-150. | MR 1279237 | Zbl 0736.35016

[Sa-F] B. Sandstede - B. Fiedler, Dynamics of periodically forced parabolic equations on the circle, to appear. | MR 1182662 | Zbl 0754.35066

[Ze] T.I. Zelenyak, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable. Differential Equations 4 (1988), 17-22. | MR 223758 | Zbl 0232.35053