Is an operator on weak L P which commutes with translations a convolution ?
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 21 (1994) no. 2, p. 267-278
@article{ASNSP_1994_4_21_2_267_0,
     author = {Brandolini, Luca and Colzani, Leonardo},
     title = {Is an operator on weak $L^P$ which commutes with translations a convolution ?},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 21},
     number = {2},
     year = {1994},
     pages = {267-278},
     zbl = {0815.47036},
     mrnumber = {1288367},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1994_4_21_2_267_0}
}
Brandolini, Luca; Colzani, Leonardo. Is an operator on weak $L^P$ which commutes with translations a convolution ?. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 21 (1994) no. 2, pp. 267-278. http://www.numdam.org/item/ASNSP_1994_4_21_2_267_0/

[1] L. Colzani, Translation invariant operators on Lorentz spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987), 257-276. | Numdam | MR 939629 | Zbl 0655.47025

[2] M. Cwikel, On the conjugate of some function spaces. Studia Math. 45 (1973), 49-55. | MR 370158 | Zbl 0219.46026

[3] M. Cwikel, The Dual of Weak Lp. Ann. Inst. Fourier (Grenoble) 25 (1975), 81-126. | Numdam | MR 407582 | Zbl 0301.46025

[4] N.J. Kalton, Representations of operators between function spaces. Indiana Un. Math. J. 33 (1984), 639-665. | MR 756152 | Zbl 0577.47029

[5] W. Rudin, Invariant means on L∞. Studia Math. 44 (1972), 219-227. | Zbl 0215.47004

[6] A.M. Shteinberg, Translation invariant operators in Lorentz spaces. Functional Anal. Appl. 20 (1986), 166-168. | MR 847159 | Zbl 0605.47033

[7] P. Sjögren, Translation invariant operators on Weak L 1. J. Funct. Anal. 89 (1990), 410-427. | MR 1042216 | Zbl 0705.47028

[8] E.M. Stein - G. Weiss, Introduction to Fourier analysis on euclidean spaces. Princeton University Press, Princeton, 1971. | MR 304972 | Zbl 0232.42007