The Stefan problem with kinetic condition at the free boundary
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 19 (1992) no. 1, p. 87-111
@article{ASNSP_1992_4_19_1_87_0,
     author = {Friedman, Avner and Hu, Bei},
     title = {The Stefan problem with kinetic condition at the free boundary},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 19},
     number = {1},
     year = {1992},
     pages = {87-111},
     zbl = {0767.35108},
     mrnumber = {1183759},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1992_4_19_1_87_0}
}
Friedman, Avner; Hu, Bei. The Stefan problem with kinetic condition at the free boundary. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 19 (1992) no. 1, pp. 87-111. http://www.numdam.org/item/ASNSP_1992_4_19_1_87_0/

[1] J.N. Dewynne - S.D. Howison - J.R. Ockendon - W. Xie, Asymptotic behavior of solutions to the Stefan problem with a kinetic condition at free boundary, J. Austral. Math. Soc. Ser. B, 31 (1989), 81-96. | MR 1002093 | Zbl 0713.35102

[2] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J. (1964). | MR 181836 | Zbl 0144.34903

[3] A. Friedman, Mathematics in Industrial Problems, Part 4, Springer-Verlag, Heidelberg (1991). | MR 1128091 | Zbl 0758.00004

[4] K. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand, 21 (1967), 17-37. | MR 239264 | Zbl 0164.13101

[5] W. Xie, The Stefan problem with a kinetic condition at the free boundary, SIAM J. Math. Anal, 21 (1990), 362-373. | MR 1038897 | Zbl 0737.35165