A few results on a class of degenerate parabolic equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Volume 18 (1991) no. 2, p. 213-249
@article{ASNSP_1991_4_18_2_213_0,
     author = {Blanchard, Dominique and Francfort, Gilles},
     title = {A few results on a class of degenerate parabolic equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 18},
     number = {2},
     year = {1991},
     pages = {213-249},
     zbl = {0778.35046},
     mrnumber = {1129302},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1991_4_18_2_213_0}
}
Blanchard, D.; Francfort, G. A. A few results on a class of degenerate parabolic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Volume 18 (1991) no. 2, pp. 213-249. http://www.numdam.org/item/ASNSP_1991_4_18_2_213_0/

[1] H.W. Alt - S. Luckhaus, Quasilinear Elliptic-Parabolic Differential Equations, Math. Z., 183 (1983), pp. 311-341. | MR 706391 | Zbl 0497.35049

[2] A. Bamberger, Etude d'une équation doublement non linéaire, J. Funct. Anal., 24 (1977), pp. 148-155. | MR 470490 | Zbl 0345.35059

[3] V. Barbu, Nonlinear Semi-Groups and Differential Equations in Banach Spaces, Noordhoff, Leiden, 1976. | MR 390843 | Zbl 0328.47035

[4] Ph. Benilan, Private communication.

[5] D. Blanchard - G. Francfort, Study of a Doubly Nonlinear Heat Equation with no Growth Assumptions on the Parabolic Term, SIAM J. Math. Anal., 19 (1988), pp. 1032-1056, and Erratum, SIAM J. Math. Anal., 20 (1989), pp. 761-762. | MR 957665

[6] L. Boccardo - T. Gallouet, On Some Nonlinear Elliptic and Parabolic Equations Involving Measure Data, J. Funct. Anal., 87 (1989), pp. 149-169. | MR 1025884 | Zbl 0707.35060

[7] L. Boccardo - F. Murat, Remarques sur l'homogénéisation de certains problèmes quasilinéaires, Portugal. Math. 41 (1982), pp. 535-562. | MR 766874 | Zbl 0524.35042

[8] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North Holland, Amsterdam, 1973. | MR 348562 | Zbl 0252.47055

[9] H. Brezis - F. Browder, Some Properties of Higher Order Sobolev Spaces, J. Math. Pures Appl. 61 (1982), pp. 207-218. | MR 690395 | Zbl 0512.46034

[10] M. Fremond, Matériaux à mémoire de forme, C. R. Acad. Sci. Paris, Sér. II, 305 (1987), pp. 741-746.

[11] M. Fremond, Internal constraints and constitutive laws, Mathematical Models for Phase Change Problems, International Series of Numerical Mathematics, 88 (1989), Birkhäuser, Basel, pp. 3-18. | MR 1038062 | Zbl 0677.73005

[12] O. Grange - F. Mignot, Sur la résolution d'une équation et d'une inéquation paraboliques non linéaires, J. Funct. Anal., 11 (1972), pp. 77-92. | MR 350207 | Zbl 0251.35055

[13] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. | MR 259693 | Zbl 0189.40603

[14] M. Marcus - V.J. Mizel, Nemitsky Operators on Sobolev Spaces, Arch. Rational Mech. Anal., 51 (1973), pp. 347-370. | MR 348480 | Zbl 0266.46029

[15] G. Milton - M.E. Fisher, Continuum Fluids with a Discontinuity in the Pressure, J. Statist. Phys., 32 (1983), pp. 413-438. | MR 715034

[16] G. Milton - M.E. Fisher, Classifying First-Order Phase Transitions, Physica 138A (1986), pp. 22-54. | MR 865235

[17] J.J. Moreau, Fonctionnelles convexes, Cours du Collège de France, Paris, 1966.

[18] F. Murat, Private communication.

[19] P.A. Raviart, Sur la résolution de certaines équations paraboliques nonlinéaires, J. Funct. Anal., 5 (1970), pp. 299-328. | MR 257585 | Zbl 0199.42401

[20] J. Simon, Compact set in Lp(0,T;B), Ann. Mat. Pura Appl. (4), 146 (1987), pp. 65-96. | MR 916688 | Zbl 0629.46031

[21] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, Grenoble, 15 (1965), pp. 189-258. | Numdam | MR 192177 | Zbl 0151.15401

[22] J.L. Webb, Boundary Value Problems for Strongly Nonlinear Elliptic Equations, J. London, Math. Soc., 21 (1980), pp. 123-132. | MR 576188 | Zbl 0438.35029