Pattern evolution
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 17 (1990) no. 2, pp. 197-225.
@article{ASNSP_1990_4_17_2_197_0,
     author = {Visintin, Augusto},
     title = {Pattern evolution},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {197--225},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 17},
     number = {2},
     year = {1990},
     zbl = {0712.49039},
     mrnumber = {1076252},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1990_4_17_2_197_0/}
}
TY  - JOUR
AU  - Visintin, Augusto
TI  - Pattern evolution
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1990
DA  - 1990///
SP  - 197
EP  - 225
VL  - Ser. 4, 17
IS  - 2
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_1990_4_17_2_197_0/
UR  - https://zbmath.org/?q=an%3A0712.49039
UR  - https://www.ams.org/mathscinet-getitem?mr=1076252
LA  - en
ID  - ASNSP_1990_4_17_2_197_0
ER  - 
%0 Journal Article
%A Visintin, Augusto
%T Pattern evolution
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1990
%P 197-225
%V Ser. 4, 17
%N 2
%I Scuola normale superiore
%G en
%F ASNSP_1990_4_17_2_197_0
Visintin, Augusto. Pattern evolution. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 17 (1990) no. 2, pp. 197-225. http://www.numdam.org/item/ASNSP_1990_4_17_2_197_0/

[1] K.A. Brakke, The motion of a surface by its mean curvature, Math. Notes, Princeton University Press, Princeton (1978). | MR | Zbl

[2] E. De Giorgi, Su una teoria generale della misura (r-1) dimensionale in uno spazio r dimensioni, Ann. Mat. Pura Appl. (4), 36 (1954), 191-213. | MR | Zbl

[3] E. De Giorgi - F. Colombini - L.C. Piccinini, Frontiere orientate di misura minima e questioni collegate, Scuola Norm. Sup., Pisa (1972). | MR | Zbl

[4] G. Dziuk, Finite element method for the Beltrami operator on arbitrary surfaces, in Partial differential equations and calculus of variations (S. Hildebrandt, R. Leis, eds.), Lecture Notes in Math., Springer, Berlin (1988). | Zbl

[5] H. Federer, Geometric measure theory, Springer-Verlag, Berlin (1969). | MR | Zbl

[6] W.H. Fleming - R. Rishel, An integral formula for total gradient variation, Arch. Math., 11 (1960), 218-222. | MR | Zbl

[7] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhäuser, Boston (1984). | MR | Zbl

[8] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), 237-266. | MR | Zbl

[9] G. Huisken, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math., 84 (1986), 463-480. | MR | Zbl

[10] G. Huisken, Deforming hypersurfaces of the sphere by their mean curvature, Math. Z., 195 (1987), 205-219. | MR | Zbl

[11] A Krasnosel'Skiĭ - A.V. Pokrovski, Systems with hysteresis (Russian), Nauka, Moskow (1983). English Translation: Springer, Berlin (1989). | MR

[12] A. Visintin, Mathematical models of hysteresis, in Topics in Non-smooth Mechanics (J.J. Moreau, G. Strang. P.D. Panagiotopoulos, Ed.s), Birkhäuser, Basel (1988). | MR | Zbl

[13] A. Visintin, Surface tension effects in phase transitions, in "Material Instabilities in Continuum Mechanics and Related Mathematical Problems" (J. Ball., ed.), Clarendon Press, Oxford (1988), 505-537. | MR | Zbl

[14] A. Visintin, Non-convex functionals related to multi-phase system, S.I.A.M. J. Math. Anal., September 1990 (in press).

[15] A. Visintin, Surface tension effects in two-phase systems, in Proceedings of the Colloquium on Free Boundary Problems held in Irsee in June 1987 (to appear). | MR

[16] A. Visintin, Generalized coarea formula and fractal sets. Japan J. Appl. Math. (to appear). | MR | Zbl

[17] A. Visintin, Generalized coarea formula, In "Recent Advances in Nonlinear Elliptic and Parabolic Problems" (P. Benilan, M. Chipot, L.C. Evans and M. Pierre, eds.), Longman, Harlow (1989). | MR

[18] A. Visintin, Models of pattern formation, C.R. Acad. Sci. Paris, 309 (1989), Série I, 429-434. | MR | Zbl