@article{ASNSP_1987_4_14_1_123_0, author = {Dancer, E. N. and Hess, P.}, title = {On stable solutions of quasilinear periodic-parabolic problems}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {123--141}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 14}, number = {1}, year = {1987}, mrnumber = {937539}, zbl = {0697.35072}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1987_4_14_1_123_0/} }
TY - JOUR AU - Dancer, E. N. AU - Hess, P. TI - On stable solutions of quasilinear periodic-parabolic problems JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1987 SP - 123 EP - 141 VL - 14 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1987_4_14_1_123_0/ LA - en ID - ASNSP_1987_4_14_1_123_0 ER -
%0 Journal Article %A Dancer, E. N. %A Hess, P. %T On stable solutions of quasilinear periodic-parabolic problems %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1987 %P 123-141 %V 14 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1987_4_14_1_123_0/ %G en %F ASNSP_1987_4_14_1_123_0
Dancer, E. N.; Hess, P. On stable solutions of quasilinear periodic-parabolic problems. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 14 (1987) no. 1, pp. 123-141. http://www.numdam.org/item/ASNSP_1987_4_14_1_123_0/
[1] Existence and multiplicity theorems for semilinear elliptic boundary value problems, Math. Z. 150 (1976), pp. 281-295. | MR | Zbl
,[2] Periodic solutions of semilinear parabolic equations, in Nonlinear Anal., eds. Cesari, Kannan and Weinberger, Academic Press, New York, 1978, pp. 1-29. | MR | Zbl
,[3] On the principal eigenvalue of a periodic-parabolic operator, Comm. P.D.E. 9 (1984), pp. 919-941. | MR | Zbl
, ,[4] Results on periodic solutions of parabolic equations suggested by elliptic theory, Boll. Un. Mat. Ital. (6) I-B (1982), pp. 1089-1104. | MR | Zbl
,[5] A selection-migration model in population genetics, J. Math. Biol., 2 (1975), pp. 219-234. | MR | Zbl
,[6] Partial Differential Equations, Holt, Rinehart and Winston, 1969. | MR | Zbl
,[7] Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer-Verlag, 1981. | MR | Zbl
,[8] On positive solutions of semilinear-parabolic problems, in Lecture Notes in Math., Springer, 1076 (1984), pp. 101-114. | MR | Zbl
,[9] Spatial homogeneity of stable solutions of some periodic-parabolic problems with Neumann boundary conditions, J. Differential Equations 68 (1987), pp. 320-331. | MR | Zbl
,[10] Existence and multiplicity result for a class of second order elliptic equations, Proc. Roy. Soc. Edinburgh, 88A (1981), pp. 83-92. | MR | Zbl
,[11] Linear and quasilinear equations of parabolic type, Amer. Math. Soc. Transl. of Math. Monographs 23, 1968. | MR | Zbl
, , ,[12] Some remarks on periodic solutions of parabolic differential equations, in "Dynamical systems II", eds. Bednarek and Cesari, Academic Press, New York 1982, pp. 227-346. | MR | Zbl
,[13] Asymptotic behaviour and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., Kyoto Univ. 15 (1979), pp. 401-454. | MR | Zbl
,[14] Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Kyoto 30 (1984), pp. 645-673. | MR | Zbl
,[15] L∞ stability of an exponentially decreasing solution of the problem Δ u + f(x, u) = 0 in Rn, to appear in Japan J. Appl. Math. | Zbl
,[16] Patterm formation in competition-diffusion systems in nonconvex domains, Publ. Res. Inst. Math. Sci., Kyoto Univ. 19 (1983), pp. 1049-1079. | MR | Zbl
, ,[17] Maximum principles in differential equations, Prentice-Hall, pp. 1967. | MR | Zbl
, ,[18] Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), pp. 979-1000. | MR | Zbl
,[19] Remarks on a nonlinear equation arising in population genetics, Comm. P.D.E. 3 (1978), pp. 907-931. | MR | Zbl
, ,[20] On a nonlinear elliptic eigenvalue problem with Neumann boundary conditions, with an application to population genetics, Comm. P.D.E. 8 (1983), pp. 1199-1228. | MR | Zbl
,[21] Local existence and nonexistence for semilinear parabolic equations in Lp, Indiana Univ. Math. J. 29 (1980), pp. 79-102. | MR | Zbl
,