@article{ASNSP_1981_4_8_3_365_0, author = {Andreotti, Aldo and Fredricks, Gregory and Nacinovich, Mauro}, title = {On the absence of {Poincar\'e} lemma in tangential {Cauchy-Riemann} complexes}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {365--404}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 8}, number = {3}, year = {1981}, mrnumber = {634855}, zbl = {0482.35061}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1981_4_8_3_365_0/} }
TY - JOUR AU - Andreotti, Aldo AU - Fredricks, Gregory AU - Nacinovich, Mauro TI - On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1981 SP - 365 EP - 404 VL - 8 IS - 3 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1981_4_8_3_365_0/ LA - en ID - ASNSP_1981_4_8_3_365_0 ER -
%0 Journal Article %A Andreotti, Aldo %A Fredricks, Gregory %A Nacinovich, Mauro %T On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1981 %P 365-404 %V 8 %N 3 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1981_4_8_3_365_0/ %G en %F ASNSP_1981_4_8_3_365_0
Andreotti, Aldo; Fredricks, Gregory; Nacinovich, Mauro. On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 8 (1981) no. 3, pp. 365-404. http://www.numdam.org/item/ASNSP_1981_4_8_3_365_0/
[0] Nine lectures in complex analysis, C.I.M.E. 1973, Cremonese, Roma, 1974. | MR | Zbl
,[1] Complexes of partial differential operators, Yale Univ. Press, 1975. | MR | Zbl
,[2] Complex characteristic coordinates and tangential Cauchy-Riemann equations, Ann. Scuola Norm. Sup. Pisa, 26 (1972), pp. 299-324. | Numdam | MR | Zbl
- ,[3] E. E. Levi convexity and the Hans Lewy problem, Part I and II, Ann. Scuola Norm. Sup. Pisa, 26 (1972), pp. 325-363 and pp. 747-806. | Numdam | Zbl
- ,[4] On analytic and C∞ Poincaré lemma, to appear in « Advances in Math. ». | Zbl
- ,[5] Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure Appl. Math., 27 (1974), pp. 585-639. | MR | Zbl
,[6] Theorie des faisceaux, Hermann, Paris, 1958. | MR
,[7] Linear Partial Differential Operators, Springer, Berlin, G. Hingen, Heidelberg, 1963. | MR | Zbl
,[8] Boundaries of complex manifolds. Proceedings Conference on Complex Analysis, Springer, Berlin, Heidelberg, New York, 1965, pp. 81-94. | MR | Zbl
,[9] An example of a smooth partial differential equation without solutions, Ann. of Math., 66 (1957), pp. 155-158. | MR | Zbl
,[10] Sur le problème de la division, Studia Math., 8 (1959), pp. 87-136. | EuDML | Zbl
,[11] Ideals of differentiable functions, Oxford Univ. Press, 1966. | MR | Zbl
,[12] Operational methods, Mir publisher, Moscow, 1973. | MR | Zbl
,[13] Localization principle for differential complexes and its applications, R.I.M.S. 94, Kyoto (1971). | MR | Zbl
,[14] On the complex form of the Poincaré lemma, Proc. Amer. Math. Soc., 9 (1958), pp. 183-188. | MR | Zbl
,[15] Microfunctions and pseudodifferential equations, Lecture Notes in Math. n. 287, pp. 265-529, Springer Berlin, Heidelberg, New York, 1973. | MR | Zbl
- - ,[16] Partial differential equations in physics, Academic Press-New York, 1967. | MR | Zbl
,[17] Study of a model in the theory of complexes of pseudodifferential operators, Ann. of Math. (2), 104 (1976), pp. 269-324. | MR | Zbl
,