@article{ASNSP_1967_3_21_3_373_0, author = {Mosco, Umberto}, title = {Approximation of the solutions of some variational inequalities}, journal = {Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche}, pages = {373--394}, publisher = {Scuola normale superiore}, volume = {Ser. 3, 21}, number = {3}, year = {1967}, mrnumber = {226376}, zbl = {0184.36803}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1967_3_21_3_373_0/} }
TY - JOUR AU - Mosco, Umberto TI - Approximation of the solutions of some variational inequalities JO - Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche PY - 1967 SP - 373 EP - 394 VL - 21 IS - 3 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1967_3_21_3_373_0/ LA - en ID - ASNSP_1967_3_21_3_373_0 ER -
%0 Journal Article %A Mosco, Umberto %T Approximation of the solutions of some variational inequalities %J Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche %D 1967 %P 373-394 %V 21 %N 3 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1967_3_21_3_373_0/ %G en %F ASNSP_1967_3_21_3_373_0
Mosco, Umberto. Approximation of the solutions of some variational inequalities. Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Serie 3, Volume 21 (1967) no. 3, pp. 373-394. http://www.numdam.org/item/ASNSP_1967_3_21_3_373_0/
(1) See [1] Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sc. Paris, t. 258 (1964), p. 4413-4416; | MR | Zbl
,[2] Ircequations variationneZLes non coercives C. R. Acad. Sc. Paris, t. 261 (1965), p. 25-27; | MR | Zbl
and ,[3] Variational Inequalities, to appear. For the « elliptic regularization » see also , Some aspects of operator differential equations, Lectures at C.I.M.E., Varenna, May 1963. | MR
and ,(2) See for instance Analytic Topology, Amer. Math. Soc. Colloq. Publs., Vol. 26, 1942, p. 10 or , Espaces topologiques, 1959, Dunod, Paris p. 124.
,(3) A similar argument has been used by On some non-lineai- elliptic differential functional equations, Acta Mat. Vol. 115,1966,
and to prove the existence of the solution of a non linear variational inequality, see P. H. - G. S.,(4) Regular Points for elliptic equations with discontinuous coefficients, Ann. Sc. Norm. Sup. Pisa XVII (1963), p. 45-79. | Numdam | MR | Zbl
, ,