@article{ASNSP_1967_3_21_3_373_0,
author = {Mosco, Umberto},
title = {Approximation of the solutions of some variational inequalities},
journal = {Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche},
pages = {373--394},
year = {1967},
publisher = {Scuola normale superiore},
volume = {Ser. 3, 21},
number = {3},
mrnumber = {226376},
zbl = {0184.36803},
language = {en},
url = {https://www.numdam.org/item/ASNSP_1967_3_21_3_373_0/}
}
TY - JOUR AU - Mosco, Umberto TI - Approximation of the solutions of some variational inequalities JO - Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche PY - 1967 SP - 373 EP - 394 VL - 21 IS - 3 PB - Scuola normale superiore UR - https://www.numdam.org/item/ASNSP_1967_3_21_3_373_0/ LA - en ID - ASNSP_1967_3_21_3_373_0 ER -
%0 Journal Article %A Mosco, Umberto %T Approximation of the solutions of some variational inequalities %J Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche %D 1967 %P 373-394 %V 21 %N 3 %I Scuola normale superiore %U https://www.numdam.org/item/ASNSP_1967_3_21_3_373_0/ %G en %F ASNSP_1967_3_21_3_373_0
Mosco, Umberto. Approximation of the solutions of some variational inequalities. Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 21 (1967) no. 3, pp. 373-394. https://www.numdam.org/item/ASNSP_1967_3_21_3_373_0/
(1) See [1] , Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sc. Paris, t. 258 (1964), p. 4413-4416; | Zbl | MR
[2] and , Ircequations variationneZLes non coercives C. R. Acad. Sc. Paris, t. 261 (1965), p. 25-27; | Zbl | MR
[3] and , Variational Inequalities, to appear. For the « elliptic regularization » see also , Some aspects of operator differential equations, Lectures at C.I.M.E., Varenna, May 1963. | MR
(2) See for instance , Analytic Topology, Amer. Math. Soc. Colloq. Publs., Vol. 26, 1942, p. 10 or , Espaces topologiques, 1959, Dunod, Paris p. 124.
(3) A similar argument has been used by and to prove the existence of the solution of a non linear variational inequality, see P. H. - G. S., On some non-lineai- elliptic differential functional equations, Acta Mat. Vol. 115,1966,
(4) , , Regular Points for elliptic equations with discontinuous coefficients, Ann. Sc. Norm. Sup. Pisa XVII (1963), p. 45-79. | Zbl | MR | Numdam






