Base change for Bernstein centers of depth zero principal series blocks  [ Changement de base pour les centres de Bernstein des blocs des séries principales de niveau zéro ]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 5, p. 681-718
Soit G un groupe non-ramifié sur un corps p-adique. On définit un homomorphisme de changement de base pour les centres de Bernstein des blocs des séries principales de niveau zéro, et on démontre le lemme fondamental correspondant. Ce résultat est utilisé dans le calcul du facteur local en p des variétés de Shimura à structure de niveau Γ 1 (p) dans l’article avec M. Rapoport [15] publié en tandem avec cet article dans ce même journal.
Let G be an unramified group over a p-adic field. This article introduces a base change homomorphism for Bernstein centers of depth-zero principal series blocks for G and proves the corresponding base change fundamental lemma. This result is used in the approach to Shimura varieties with Γ 1 (p)-level structure initiated by M. Rapoport and the author in [15].
DOI : https://doi.org/10.24033/asens.2176
Classification:  11F72,  22E50
Mots clés: intégrales orbitales sur des groupes p-adiques, formule de traces d’Arthur-Selberg
@article{ASENS_2012_4_45_5_681_0,
     author = {Haines, Thomas J.},
     title = {Base change for Bernstein centers of depth zero principal series blocks},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 45},
     number = {5},
     year = {2012},
     pages = {681-718},
     doi = {10.24033/asens.2176},
     mrnumber = {3053007},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_2012_4_45_5_681_0}
}
Haines, Thomas J. Base change for Bernstein centers of depth zero principal series blocks. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 5, pp. 681-718. doi : 10.24033/asens.2176. http://www.numdam.org/item/ASENS_2012_4_45_5_681_0/

[1] J. Arthur & L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Math. Studies 120, Princeton Univ. Press, 1989. | MR 1007299 | Zbl 0682.10022

[2] J. N. Bernstein, Le « centre » de Bernstein, in Représentations des groupes réductifs sur un corps local (P. Deligne, éd.), Travaux en Cours, Hermann, 1984, 1-32. | MR 771671 | Zbl 0599.22016

[3] F. Bruhat & J. Tits, Groupes réductifs sur un corps local. II, Publ. Math. I.H.É.S. 60 (1984), 5-184. | Numdam | Zbl 0254.14017

[4] C. J. Bushnell & P. C. Kutzko, Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. 77 (1998), 582-634. | MR 1643417 | Zbl 0911.22014

[5] W. Casselman, Characters and Jacquet modules, Math. Ann. 230 (1977), 101-105. | MR 492083 | Zbl 0337.22019

[6] W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, unpublished notes, 1995.

[7] L. Clozel, The fundamental lemma for stable base change, Duke Math. J. 61 (1990), 255-302. | MR 1068388 | Zbl 0731.22011

[8] P. Deligne, Le support du caractère d'une représentation supercuspidale, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), A155-A157. | MR 425033 | Zbl 0336.22009

[9] D. J. Goldstein, Hecke algebra isomorphisms for tamely ramified characters, Thèse, The University of Chicago, 1990. | MR 2611915

[10] T. J. Haines, Introduction to Shimura varieties with bad reduction of parahoric type, in Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc. 4, Amer. Math. Soc., 2005, 583-642. | MR 2192017 | Zbl 1148.11028

[11] T. J. Haines, The base change fundamental lemma for central elements in parahoric Hecke algebras, Duke Math. J. 149 (2009), 569-643. | MR 2553880 | Zbl 1194.22019

[12] T. J. Haines, On Hecke algebra isomorphisms and types for depth-zero principal series, expository note available at http://www.math.umd.edu/~tjh, 2009.

[13] T. J. Haines & M. Rapoport, On parahoric subgroups, Adv. Math. 219 (2008), 188-198, appendix to [29]. | MR 2435422

[14] T. J. Haines & M. Rapoport, Shimura varieties with Γ 1 (p)-level via Hecke algebra isomorphisms: the Drinfeld case, Ann. Sci. École Norm. Sup. 45 (2012), 719-785. | Numdam | MR 3053008 | Zbl 1337.11041 | Zbl pre06155585

[15] T. C. Hales, On the fundamental lemma for standard endoscopy: reduction to unit elements, Canad. J. Math. 47 (1995), 974-994. | MR 1350645 | Zbl 0840.22032

[16] D. Keys, Reducibility of unramified unitary principal series representations of p-adic groups and class-1 representations, Math. Ann. 260 (1982), 397-402. | MR 670188 | Zbl 0488.22026

[17] R. E. Kottwitz, Rational conjugacy classes in reductive groups, Duke Math. J. 49 (1982), 785-806. | MR 683003 | Zbl 0506.20017

[18] R. E. Kottwitz, Base change for unit elements of Hecke algebras, Compositio Math. 60 (1986), 237-250. | Numdam | MR 868140

[19] R. E. Kottwitz, Tamagawa numbers, Ann. of Math. 127 (1988), 629-646. | MR 942522 | Zbl 0678.22012

[20] R. E. Kottwitz, Shimura varieties and λ-adic representations, in Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math. 10, Academic Press, 1990, 161-209. | MR 1044820 | Zbl 0743.14019

[21] R. E. Kottwitz, On the λ-adic representations associated to some simple Shimura varieties, Invent. Math. 108 (1992), 653-665. | MR 1163241 | Zbl 0765.22011

[22] R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), 373-444. | MR 1124982 | Zbl 0796.14014

[23] R. E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), 255-339. | MR 1485921 | Zbl 0966.20022

[24] J.-P. Labesse, Fonctions élémentaires et lemme fondamental pour le changement de base stable, Duke Math. J. 61 (1990), 519-530. | MR 1074306 | Zbl 0731.22012

[25] J.-P. Labesse, Noninvariant base change identities, Mém. Soc. Math. France (N.S.) 61 (1995). | Numdam | MR 1339717 | Zbl 0868.11026

[26] J.-P. Labesse, Cohomologie, stabilisation et changement de base, Astérisque 257 (1999). | MR 1695940 | Zbl 1024.11034

[27] R. P. Langlands, Base change for GL (2), Annals of Math. Studies 96, Princeton Univ. Press, 1980. | MR 574808 | Zbl 0444.22007

[28] L. Morris, Tamely ramified intertwining algebras, Invent. Math. 114 (1993), 1-54. | MR 1235019 | Zbl 0854.22022

[29] G. Pappas & M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), 118-198. | MR 2435422 | Zbl 1159.22010

[30] A. Roche, Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. École Norm. Sup. 31 (1998), 361-413. | Numdam | MR 1621409 | Zbl 0903.22009

[31] J. D. Rogawski, Trace Paley-Wiener theorem in the twisted case, Trans. Amer. Math. Soc. 309 (1988), 215-229. | MR 957068 | Zbl 0663.22011

[32] J-P. Serre, Local fields, Graduate Texts in Math. 67, Springer, 1979. | MR 554237 | Zbl 0423.12016