On determining a riemannian manifold from the Dirichlet-to-Neumann map
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 5, pp. 771-787.
@article{ASENS_2001_4_34_5_771_0,
     author = {Lassas, Matti and Uhlmann, Gunther},
     title = {On determining a riemannian manifold from the {Dirichlet-to-Neumann} map},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {771--787},
     publisher = {Elsevier},
     volume = {Ser. 4, 34},
     number = {5},
     year = {2001},
     doi = {10.1016/s0012-9593(01)01076-x},
     zbl = {0992.35120},
     mrnumber = {1862026},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/s0012-9593(01)01076-x/}
}
TY  - JOUR
AU  - Lassas, Matti
AU  - Uhlmann, Gunther
TI  - On determining a riemannian manifold from the Dirichlet-to-Neumann map
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2001
DA  - 2001///
SP  - 771
EP  - 787
VL  - Ser. 4, 34
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/s0012-9593(01)01076-x/
UR  - https://zbmath.org/?q=an%3A0992.35120
UR  - https://www.ams.org/mathscinet-getitem?mr=1862026
UR  - https://doi.org/10.1016/s0012-9593(01)01076-x
DO  - 10.1016/s0012-9593(01)01076-x
LA  - en
ID  - ASENS_2001_4_34_5_771_0
ER  - 
%0 Journal Article
%A Lassas, Matti
%A Uhlmann, Gunther
%T On determining a riemannian manifold from the Dirichlet-to-Neumann map
%J Annales scientifiques de l'École Normale Supérieure
%D 2001
%P 771-787
%V Ser. 4, 34
%N 5
%I Elsevier
%U https://doi.org/10.1016/s0012-9593(01)01076-x
%R 10.1016/s0012-9593(01)01076-x
%G en
%F ASENS_2001_4_34_5_771_0
Lassas, Matti; Uhlmann, Gunther. On determining a riemannian manifold from the Dirichlet-to-Neumann map. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 5, pp. 771-787. doi : 10.1016/s0012-9593(01)01076-x. http://www.numdam.org/articles/10.1016/s0012-9593(01)01076-x/

[1] Brown R., Global uniqueness in the impedance imaging problem for less regular conductivities, SIAM J. Math. Anal. 27 (1996) 1049-1056. | MR | Zbl

[2] Brown R., Uhlmann G., Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. Partial Differential Equations 22 (1997) 1009-1027. | MR | Zbl

[3] Calderón A.P., On an inverse boundary value problem, in: Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Río de Janeiro, 1980, pp. 65-73. | MR

[4] Hörmander L., The Analysis of Linear Partial Differential Operators III, Springer-Verlag, 1985. | MR | Zbl

[5] Isakov V., Inverse Problems for Partial Differential Equations, Springer-Verlag, 1998, 284 pp. | MR | Zbl

[6] Kohn R., Vogelius M., Determining conductivity by boundary measurements II. Interior results, Comm. Pure Appl. Math. 38 (1985) 643-667. | MR | Zbl

[7] Lee J., Uhlmann G., Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math. 42 (1989) 1097-1112. | MR | Zbl

[8] Nachman A., A global uniqueness for a two-dimensional inverse problem, Ann. Math. 142 (2) (1996) 71-96. | MR | Zbl

[9] Petersen P., Riemannian Geometry, Springer-Verlag, 1998. | MR | Zbl

[10] Sylvester J., An anisotropic inverse boundary value problem, Comm. Pure Appl. Math. 38 (1990) 201-232. | MR | Zbl

[11] Sylvester J., Uhlmann G., A uniqueness theorem for an inverse boundary problem, Ann. Math. 125 (2) (1987) 153-169. | MR | Zbl

[12] Taylor M., Partial Differential Equations II, Springer-Verlag, 1996. | Zbl

[13] Taylor M., Partial Differential Equations III, Springer-Verlag, 1996. | Zbl

[14] Tennison B., Sheaf Theory, Cambridge University Press, 1975, 164 pp. | MR | Zbl

[15] Uhlmann G., Developments in inverse problems since Calderón's foundational paper, in: Harmonic Analysis and Partial Differential Equations, University of Chicago Press, 1999, pp. 245-295, [Essays in honor of Alberto P. Calderón, University of Chicago Press, edited by Christ M., Kenig C. and Sadosky C.]. | MR | Zbl

[16] Vekua I., Generalized Analytic Functions, Pergamon Press, 1962. | MR | Zbl

Cited by Sources: