The tensor product of exceptional representations on the general linear group
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 5, pp. 741-769.
@article{ASENS_2001_4_34_5_741_0,
     author = {Kable, Anthony C.},
     title = {The tensor product of exceptional representations on the general linear group},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {741--769},
     publisher = {Elsevier},
     volume = {Ser. 4, 34},
     number = {5},
     year = {2001},
     doi = {10.1016/s0012-9593(01)01075-8},
     zbl = {1005.20033},
     mrnumber = {1862025},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/s0012-9593(01)01075-8/}
}
TY  - JOUR
AU  - Kable, Anthony C.
TI  - The tensor product of exceptional representations on the general linear group
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2001
DA  - 2001///
SP  - 741
EP  - 769
VL  - Ser. 4, 34
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/s0012-9593(01)01075-8/
UR  - https://zbmath.org/?q=an%3A1005.20033
UR  - https://www.ams.org/mathscinet-getitem?mr=1862025
UR  - https://doi.org/10.1016/s0012-9593(01)01075-8
DO  - 10.1016/s0012-9593(01)01075-8
LA  - en
ID  - ASENS_2001_4_34_5_741_0
ER  - 
%0 Journal Article
%A Kable, Anthony C.
%T The tensor product of exceptional representations on the general linear group
%J Annales scientifiques de l'École Normale Supérieure
%D 2001
%P 741-769
%V Ser. 4, 34
%N 5
%I Elsevier
%U https://doi.org/10.1016/s0012-9593(01)01075-8
%R 10.1016/s0012-9593(01)01075-8
%G en
%F ASENS_2001_4_34_5_741_0
Kable, Anthony C. The tensor product of exceptional representations on the general linear group. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 5, pp. 741-769. doi : 10.1016/s0012-9593(01)01075-8. http://www.numdam.org/articles/10.1016/s0012-9593(01)01075-8/

[1] Banks W.D., Levy J., Sepanski M.R., Block-compatible metaplectic cocycles, J. Reine Angew. Math. 507 (1999) 131-163. | MR | Zbl

[2] Bernstein J.N., Zelevinsky A.V., Representations of the group GL(n,F) where F is a nonarchimedean local field, Usp. Mat. Nauk. 31 (1976) 5-70. | MR | Zbl

[3] Bernstein J.N., Zelevinsky A.V., Induced representations of reductive p-adic groups I, Ann. Scient. École Norm. Sup. 10 (1977) 441-472. | Numdam | MR | Zbl

[4] Borel A., Linear Algebraic Groups, Graduate Texts in Math., 126, Springer-Verlag, New York, 1991. | MR | Zbl

[5] Bump D., Ginzburg D., Symmetric square L-functions on GL(r), Ann. of Math. 136 (1992) 137-205. | MR | Zbl

[6] Flicker Y.Z., Kazhdan D.A., Metaplectic correspondence, Publ. Math. Inst. Hautes Études Sci. 64 (1989) 53-110. | Numdam | MR | Zbl

[7] Flicker Y.Z., Kazhdan D.A., Savin G., Explicit realization of a metaplectic representation, J. d'Anal. Math. 55 (1990) 17-39. | MR | Zbl

[8] Gelbart S., Piatetski-Shapiro I.I., Distinguished representations and modular forms of half-integral weight, Invent. Math. 59 (1980) 145-188. | MR | Zbl

[9] Gelfand I.M., Kazhdan D.A., Representations of GL(n,K), in: Lie Groups and Their Representations 2, Akadèmiai Kiado, Budapest, 1974.

[10] Huang J.-S., The unitary dual of the universal covering group of GL(n,R), Duke Math. J. 61 (1990) 705-745. | MR | Zbl

[11] Kable A.C., The main involutions of the metaplectic group, Proc. Amer. Math. Soc. 127 (1999) 955-962. | MR | Zbl

[12] Kazhdan D.A., Patterson S.J., Metaplectic forms, Publ. Math. Inst. Hautes Études Sci. 59 (1984) 35-142. | EuDML | Numdam | MR | Zbl

[13] Matsumoto H., Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Scient. École Norm. Sup. 2 (1969) 1-62. | EuDML | Numdam | MR | Zbl

[14] Prasad D., Some applications of seesaw duality to branching laws, Math. Ann. 304 (1996) 1-20. | MR | Zbl

[15] Savin G., On the tensor product of theta representations of GL(3), Pacific J. Math. 154 (1992) 369-380. | MR | Zbl

[16] Weil A., Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964) 143-211. | MR | Zbl

[17] Weil A., Basic Number Theory, Grund. Math. Wiss., 144, Springer-Verlag, New York, 1974. | MR | Zbl

Cited by Sources: