@article{ASENS_2000_4_33_3_321_0,
author = {Nevo, Amos and Zimmer, Robert J.},
title = {Rigidity of {Furstenberg} entropy for semisimple {Lie} group actions},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {321--343},
year = {2000},
publisher = {Elsevier},
volume = {Ser. 4, 33},
number = {3},
doi = {10.1016/s0012-9593(00)00113-0},
mrnumber = {2001k:22009},
zbl = {0956.22005},
language = {en},
url = {https://www.numdam.org/articles/10.1016/s0012-9593(00)00113-0/}
}
TY - JOUR AU - Nevo, Amos AU - Zimmer, Robert J. TI - Rigidity of Furstenberg entropy for semisimple Lie group actions JO - Annales scientifiques de l'École Normale Supérieure PY - 2000 SP - 321 EP - 343 VL - 33 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/s0012-9593(00)00113-0/ DO - 10.1016/s0012-9593(00)00113-0 LA - en ID - ASENS_2000_4_33_3_321_0 ER -
%0 Journal Article %A Nevo, Amos %A Zimmer, Robert J. %T Rigidity of Furstenberg entropy for semisimple Lie group actions %J Annales scientifiques de l'École Normale Supérieure %D 2000 %P 321-343 %V 33 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/s0012-9593(00)00113-0/ %R 10.1016/s0012-9593(00)00113-0 %G en %F ASENS_2000_4_33_3_321_0
Nevo, Amos; Zimmer, Robert J. Rigidity of Furstenberg entropy for semisimple Lie group actions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 33 (2000) no. 3, pp. 321-343. doi: 10.1016/s0012-9593(00)00113-0
[1] , , Products of Random Matrices with Applications to Random Schrödinger Operators, Birkhäuser, Boston, 1985. | Zbl
[2] , A Poisson formula for semi-simple Lie groups, Annals of Math. 77 (2) (1963) 335-386. | Zbl | MR
[3] , Non commuting random products, Trans. Amer. Math. Soc. 108 (1963) 377-428. | Zbl | MR
[4] , Random walks and discrete subgroups of Lie groups, in : Advances in Probability, Vol. 1, Dekker, New York, 1970, pp. 3-63. | Zbl
[5] , Boundary theory and stochastic processes on homogeneous spaces, Proc. Symp. Pure Math. 26 (1974) 193-226. | Zbl | MR
[6] , Random walks on Lie groups, in : Wolf J.A., de Wilde M. (Eds.), Harmonic Analysis and Representations of Semi-Simple Lie Groups, D. Reidel, Dordrecht, 1980, pp. 467-489. | Zbl
[7] , , Topological superrigidity and applications to Anosov actions, Ann. Sci. Éc. Norm. Sup. 31 (1998) 599-629. | Zbl | MR | Numdam
[8] , , Propriétés de contraction d'un semi-groupe de matrices inversible. Coefficients de Liapunoff d'un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989) 165-197. | Zbl | MR
[9] , , Random walks on discrete groups : Boundary and entropy, Ann. Probab. 11 (3) (1983) 457-490. | Zbl | MR
[10] , Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1 (1996) 71-82. | Zbl | MR
[11] , , Arithmetic structure of fundamental groups and actions of semi-simple groups, Topology, to appear. | Zbl
[12] , Discrete Subgroups of Semisimple Lie Groups, A Series of Modern Surveys in Mathematics, Vol. 17, Springer, 1991. | Zbl | MR
[13] , Group actions with positive Furstenberg entropy, Preprint.
[14] , , Homogeneous projective factors for actions of semisimple Lie groups, Invent. Math. 138 (1999) 229-252. | Zbl | MR
[15] , , A generalization of the intermediate factor theorem, Preprint.
[16] , , Random invariants, algebraic hulls, and projective quotients for semisimple Lie group actions, Preprint.
[17] , Ergodic theory, semi-simple Lie groups, and foliations by manifolds of negative curvature, Publ. Math. IHES 55 (1982) 37-62. | Zbl | MR | Numdam
[18] , Induced and amenable actions of Lie groups, Ann. Sci. Éc. Norm. Sup. 11 (1978) 407-428. | Zbl | MR | Numdam
[19] , On the cohomology of ergodic group actions, Israel J. Math. 35 (4) (1980) 289-300. | Zbl | MR
[20] , Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984. | Zbl | MR
[21] , Representations of fundamental groups of manifolds with a semisimple transformation group, J. Amer. Math. Soc. 2 (1989) 201-213. | Zbl | MR
Cité par Sources :






