@article{ASENS_1978_4_11_3_407_0,
author = {Zimmer, Robert J.},
title = {Induced and amenable ergodic actions of {Lie} groups},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {407--428},
year = {1978},
publisher = {Elsevier},
volume = {Ser. 4, 11},
number = {3},
doi = {10.24033/asens.1351},
mrnumber = {81b:22013},
zbl = {0401.22009},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.1351/}
}
TY - JOUR AU - Zimmer, Robert J. TI - Induced and amenable ergodic actions of Lie groups JO - Annales scientifiques de l'École Normale Supérieure PY - 1978 SP - 407 EP - 428 VL - 11 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.24033/asens.1351/ DO - 10.24033/asens.1351 LA - en ID - ASENS_1978_4_11_3_407_0 ER -
%0 Journal Article %A Zimmer, Robert J. %T Induced and amenable ergodic actions of Lie groups %J Annales scientifiques de l'École Normale Supérieure %D 1978 %P 407-428 %V 11 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.24033/asens.1351/ %R 10.24033/asens.1351 %G en %F ASENS_1978_4_11_3_407_0
Zimmer, Robert J. Induced and amenable ergodic actions of Lie groups. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 11 (1978) no. 3, pp. 407-428. doi: 10.24033/asens.1351
[1] , Representation of Ergodic Flows (Annals of Math., Vol. 42, 1941, pp. 723-739). | Zbl | MR | JFM
[2] , Linear Algebraic Groups, Benjamin, New York, 1969. | Zbl | MR
[3] , Représentations induites holomorphes des groupes resoluble algébriques (Bull. Soc. Math. France) Vol. 94, 1966, pp. 181-206). | Zbl | MR | Numdam
[4] , Transformation groups and C*-Algebras (Annals of Math., Vol. 81, 1965, pp. 38-55). | Zbl | MR
[5] and , Ergodic Equivalence Relations, Cohomology, and von Neumann Algebras (Trans. Amer. Math. Soc., Vol. 234, 1977, pp. 289-360). | Zbl | MR
[6] , , and , Orbit Structure and Countable Sections for Actions of Continuous Groups. (Advances in Math., Vol. 28, 1978, pp. 186-230). | Zbl | MR
[7] , A Poisson Formula for Semi-Simple Lie Groups (Annals of Math., Vol. 77, 1963, pp. 335-383). | Zbl | MR
[8] , Boundary Theory and Stochastic Processes on Homogeneous Spaces, in Harmonic Analysis on Homogeneous Spaces (Symposia in Pure Mathematics, Williamstown, Mass., 1972). | Zbl
[9] , Croissance polynomials et périodes des fonctions harmoniques (Bull. Soc. Math. France, Vol. 101, 1973, pp. 333-379). | Zbl | MR | Numdam
[10] , Induced Representations of Locally Compact Groups, I (Annals of Math., Vol. 55, 1952, pp. 101-139). | Zbl | MR
[11] , Point Realizations of Transformation Groups, (Illinois J. Math., Vol. 6, 1962, pp. 327-335). | Zbl | MR
[12] , Ergodic Theory and Virtual Groups (Math. Ann., Vol. 166, 1966, pp. 187-207). | Zbl | MR
[13] , Ergodic Theory and its Significance for Statistical Mechanics and Probability Theory (Advances in Math., Vol. 12, 1974, pp. 178-268). | Zbl | MR
[14] , Ergodicity of Flows on Homogeneous Spaces (Amer. J. Math., Vol. 88, 1966, pp. 154-178). | Zbl | MR
[15] , Virtual Groups and Group Actions (Advances in Math., Vol. 6, 1971, pp. 253-322). | Zbl | MR
[16] , The Rohlin Theorem and Hyperfiniteness for Actions of Continuous Groups (to appear).
[17] , Geometry of Quantum Theory, Vol. II, van Nostrand, Princeton, N. J., 1970. | Zbl | MR
[18] , Extensions of Ergodic Group Actions (Illinois J. Math., Vol. 20, 1976, pp. 373-409). | Zbl | MR
[19] , Amenable Ergodic Actions, Hyperfinite Factors, and Poincaré Flows (Bull. Amer. Math. Soc., Vol. 83, 1977, pp. 1078-1080). | Zbl | MR
[20] , Amenable Ergodic Group Actions and an Application to Poisson Boundaries of Random Walks (J. Funct. Anal., Vol. 27, 1978, pp. 350-372). | Zbl | MR
[21] , On the von Neumann Algebra of an Ergodic Group Action (Proc. Amer. Math. Soc., Vol. 66, 1977, pp. 289-293). | Zbl | MR
[22] , Hyperfinite Factors and Amenable Ergodic Actions (Invent. Math., Vol. 41, 1977, pp. 23-31). | Zbl | MR
[23] , Amenable Pairs of Groups and Ergodic Actions and the Associated von Neumann Algebras [Trans. Amer. Math. Soc. (to appear)]. | Zbl
[24] , Orbit Spaces of Unitary Representations, Ergodic Theory, and Simple Lie Groups (Ann. of Math., Vol. 106, 1977, pp. 573-588). | Zbl | MR
[25] , The σ-Representations of Amenable Groupoids, preprint.
Cité par Sources :






