Bloch-Ogus properties for topological cycle theory
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 33 (2000) no. 1, pp. 57-79.
@article{ASENS_2000_4_33_1_57_0,
     author = {Friedlander, Eric M.},
     title = {Bloch-Ogus properties for topological cycle theory},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {57--79},
     publisher = {Elsevier},
     volume = {Ser. 4, 33},
     number = {1},
     year = {2000},
     doi = {10.1016/s0012-9593(00)00103-8},
     zbl = {0982.14011},
     mrnumber = {2000m:14025},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/s0012-9593(00)00103-8/}
}
TY  - JOUR
AU  - Friedlander, Eric M.
TI  - Bloch-Ogus properties for topological cycle theory
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2000
DA  - 2000///
SP  - 57
EP  - 79
VL  - Ser. 4, 33
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/s0012-9593(00)00103-8/
UR  - https://zbmath.org/?q=an%3A0982.14011
UR  - https://www.ams.org/mathscinet-getitem?mr=2000m:14025
UR  - https://doi.org/10.1016/s0012-9593(00)00103-8
DO  - 10.1016/s0012-9593(00)00103-8
LA  - en
ID  - ASENS_2000_4_33_1_57_0
ER  - 
%0 Journal Article
%A Friedlander, Eric M.
%T Bloch-Ogus properties for topological cycle theory
%J Annales scientifiques de l'École Normale Supérieure
%D 2000
%P 57-79
%V Ser. 4, 33
%N 1
%I Elsevier
%U https://doi.org/10.1016/s0012-9593(00)00103-8
%R 10.1016/s0012-9593(00)00103-8
%G en
%F ASENS_2000_4_33_1_57_0
Friedlander, Eric M. Bloch-Ogus properties for topological cycle theory. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 33 (2000) no. 1, pp. 57-79. doi : 10.1016/s0012-9593(00)00103-8. http://www.numdam.org/articles/10.1016/s0012-9593(00)00103-8/

[1] F.J. Almgren, JR., Homotopy groups of the integral cyclic groups, Topology 1 (1962) 257-299. | MR | Zbl

[2] D. Barlet, Espace Analytique Réduit des Cycles Analytiques Complexes Compacts d'un Espace Analytique Complexe de Dimension Finite, Fonctions de Plusieurs Variables, II, Lecture Notes in Math., Vol. 482, Springer, Berlin, 1975, pp. 1-158. | MR | Zbl

[3] S. Bloch and A. Ogus, Gersten's conjecture and the homology of schemes, Ann. Éc. Norm. Sup. 7 (1974) 181-202. | Numdam | MR | Zbl

[4] K. Brown and S. Gersten, Algebraic K-Theory as Generalized Sheaf Cohomology, Algebraic K-Theory, I, Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 266-292. | MR | Zbl

[5] E. Friedlander, Algebraic cocycles, Chow varieties, and Lawson homology, Compositio Math. 77 (1991) 55-93. | Numdam | MR | Zbl

[6] E. Friedlander, Algebraic cocycles on normal, quasi-projective varieties, Compositio Math. 110 (1998) 127-162. | MR | Zbl

[7] E. Friedlander and O. Gabber, Cycles spaces and intersection theory, Topological Methods in Modern Mathematics (1993) 325-370. | MR | Zbl

[8] E. Friedlander and H.B. Lawson, A theory of algebraic cocycles, Annals of Math. 136 (1992) 361-428. | MR | Zbl

[9] E. Friedlander and H.B. Lawson, Duality relating spaces of algebraic cocycles and cycles, Topology 36 (1997) 533-565. | MR | Zbl

[10] E. Friedlander and H.B. Lawson, Moving algebraic cycles of bounded degree, Inventiones Math. 132 (1998) 91-119. | MR | Zbl

[11] E. Friedlander and H.B. Lawson, Graph mappings and Poincaré duality.

[12] E. Friedlander and B. Mazur, Filtration on the Homology of Algebraic Varieties, Memoirs of AMS, Vol. 529, 1994. | MR | Zbl

[13] E. Friedlander and V. Voevodsky, Bivariant cycle cohomology, in : V. Voevodsky, A. Suslin and E. Friedlander, eds., Cycles, Transfers, and Motivic Homology Theories, Annals of Math. Studies, 1999. | Zbl

[14] E. Friedlander and M. Walker, Function spaces and continuous algebraic pairings for varieties, Compositio Math. (to appear). | Zbl

[15] H. Gillet, Riemann-Roch theorems for higher algebraic K-theory, Adv. in Math. 40 (1981) 203-289. | MR | Zbl

[16] H.B. Lawson, Algebraic cycles and homotopy theory, Annals of Math. 129 (1989) 253-291. | MR | Zbl

[17] P. Lima-Filho, Completions and fibrations for topological monoids, Trans. Amer. Math. Soc. 340 (1993) 127-147. | MR | Zbl

[18] A. Suslin and V. Voevodsky, Chow sheaves, in : V. Voevodsky, A. Suslin and E. Friedlander, eds., Cycles, Transfers, and Motivic Homology Theories, Annals of Math. Studies, 1999.

Cited by Sources: