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BLOCH-OGUS PROPERTIES
FOR TOPOLOGICAL CYCLE THEORY

BY ERIC M. FRIEDLANDER 1

ABSTRACT. - We reformulate and extend "morphic cohomology" developed by the author and
H.B. Lawson so that, together with "Lawson homology", it satisfies the axioms of S. Bloch and A. Ogus
for a "Poincare duality theory with supports" on complex quasi-projective varieties. © 2000 Editions
scientifiques et medicales Elsevier SAS

RESUME. - Nous reformulons et etendons la cohomologie morphique developpee par Fauteur et
H.B. Lawson de telle sorte qu'elle satisfasse, avec 1'homologie de Lawson, les axiomes de S. Bloch et
A. Ogus pour une theorie de la dualite de Poincare a supports sur les varietes complexes quasi-projectives.
© 2000 Editions scientifiques et medicales Elsevier SAS

In this paper, we re-formulate "morphic cohomology" as introduced by the author and
H.B. Lawson [8] in such a way that it and "Lawson homology" satisfy the list of basic properties
codified by S. Bloch and A. Ogus [3]. This reformulation enables us to clarify and unify our
previous definitions and provides this topological cycle theory with foundational properties
which have proved useful for other cohomology theories. One formal consequence of these
Bloch-Ogus properties is the existence of a local-to-global spectral sequence which should prove
valuable for computations (a simple example of which is given in Corollary 7.3).

The basic result of this paper is that topological cycle cohomology theory (which agrees
with morphic cohomology for smooth varieties) in conjunction with topological cycle homology
theory (which is shown to always agree with Lawson homology) do indeed satisfy the Bloch-
Ogus properties for a "Poincare duality theory with supports" on complex quasi-projective
varieties. As we demonstrate in the final section of this paper, our techniques also suffice to
prove that topological cycle theory satisfies the stronger axioms of H. Gillet [15] (other than
homotopy invariance of cohomology on singular varieties).

We view the challenge of verification of the Bloch-Ogus properties as worthy for several
reasons. First, the properties require certain definitions and constructions whose development
add substance to morphic cohomology/Lawson homology. For example, considerable effort
is required to extend earlier definitions to a cohomology theory defined and contravariantly
functorial on all quasi-projective varieties. As another example, our cap product pairing (whose
continuity is established in [14]) leads to a natural extension of earlier duality theorems of the
author and Lawson [9,6,11].

Second, the properties constrain the formulation of our theory, thereby giving us a good basis
for choosing the definitions we propose. Third, the fact that these properties can be verified tells

1 Partially supported by the N.S.R and the N.S.A.
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58 E.M. FRIEDLANDER

us that this theory, although originating as it does in differential geometry and topology, behaves
very much as other theories familiar to algebraic geometers and thus might be more readily
applicable to geometric problems. Finally, the constructions we present are closely related to
those involved in formulating a suitable motivic cohomology theory as in [13] (for example,
we use V. Voevodsky's qfh-topology to extend definitions from normal varieties to all varieties),
so that our topological point of view may serve as an accessible entry into that more algebraic
theory.

Over the past decade, Lawson homology and morphic cohomology have been reformulated
several times, with each reformulation providing either a simplification of definitions and/or an
extension of the class of varieties for which the theory is applicable (cf. [5,6,8,9,12,16,17]). As
now presented our topological cycle theory is an appropriate extension to all quasi-projective
varieties of Lawson homology/morphic cohomology on smooth varieties.

Throughout this paper, "variety" will be taken to mean a locally closed subset (in the Zariski
topology) of some complex projective space (i.e., a reduced but not-necessarily irreducible
scheme of finite type over the complex field C which admits a Zariski locally closed embedding
in a complex projective space).

I am grateful to Robert Lateveer for asking whether the Bloch-Ogus properties hold for
topological cycle theory. I also thank my colleagues Andrei Suslin, Vladimir Voevodsky, and
Mark Walker for valuable insights into this formalism. Finally, I thank the referee who suggested
consideration of Gillet's axioms as well as those of Bloch and Ogus.

1. Spaces of continuous algebraic maps

In this section, we investigate the topological mapping space Mor(X,Cr(Y)) of continuous
algebraic maps from a variety X to the abelian monoid Cr(Y) of effective r-cycles on a
projective variety Y. We begin by considering cycles on X x Y equi-dimensional of relative
dimension r over a normal variety X as considered in [6]. We recall that such "effective cocycles"
on a normal variety X can be reinterpreted as morphisms from X to Cr(Y). With the aid of the
qfh topology, we are led to consider continuous algebraic maps from a general variety X to a
projective variety W. This leads to a suitable topological monoid Mor(X, Cr(Y)) for general X.

If Y is a projective variety provided with a given embedding Y C P^ into some projective
space, then the Chow variety Cr,d(Y) is a projective variety (i.e., a Zariski closed subset of some
projective space) whose points naturally correspond to effective r-cycles on Y of degree d. We let
Cr(Y) denote the abelian monoid ]_]^Q Cr,d(Y). We provide Cr(Y) with the analytic topology;
so defined, the topological abelian monoid Cr(Y) is independent of the projective embedding
of Y. (Indeed, the algebraic structure of Cr(Y) does not depend upon the projective embedding
of Y as shown by D. Barlet [2].) If V C Y is a Zariski open subset of a projective variety Y
with complement Y^=Y -V, then we define Cr(V) to be the quotient topological monoid
Cr(Y)/Cr(Y^Y, so defined Cr(V) is independent of the projective closure V C Y (cf. [7,17]).

We begin with what we consider a good definition of the topological abelian monoid of equi-
dimensional cycles over a normal variety X.

DEFINITION ([6, 1.6]).-Let X be a normal quasi-projective variety of pure dimension m
and Y a projective variety. The topological abelian monoid of effective cocycles on X of relative
dimension r in Y is the following quotient monoid

Cr(Y)(X) =: £r(Y)(X)/Cr^m(X^ X Y).
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BLOCH-OGUS PROPERTIES FOR TOPOLOGICAL CYCLE THEORY 59

Here, X C~X is a projective closure, X^ = ~X - X, and £r(Y)(X) C Cr^m(X x Y) is the
constructible submonoid of effective r + m-cycles on X x Y whose restrictions to X x Y are
equi-dimensional over X.

To extend this to more general X, it will be useful to recall the following reinterpretation of
Cr(Y)(X).

PROPOSITION 1.1 ([9, C.3]). - Let X be a normal, quasi-projective variety and Y projective.
The topological abelian monoid Cr(Y)(X) can be identified with the abelian monoid of
morphisms from X to Cr(Y) provided with the following topology: a sequence [fn'- X —> Cr(Y)]
converges to some morphism f'.X—f Cr(Y) provided that it converges with respect to the
compact open topology in Homcont(^jCr(Y)) (where X,Cr(Y) are provided with the analytic
topology) and provided that for some projective closure X C X the closures of the graphs of fn
in X xY have bounded degree.

We denote this topological abelian monoid of morphisms from X to Cr(Y) by Mor(X, Cr(Y)).
As shown in [6, 3.3], the map Mor(X,Cr(Y)) -^ Mor(X\Cr(Y)) induced by a morphism
/: X' —> X is continuous (with respect to the topology described above).

We next recall V. Voevodsky's qfh-topology, a Grothendieck topology on the category of
varieties. Recall that a continuous map /: V —^ Y of topological spaces is said to be a universal
topological epimorphism if for all Y ' —^ Y the pull-back //: V x y Y ' —> Y ' satisfies the
conditions that /' is surjective and that U C Y ' is open if and only if f'^^U) C V Xy V is
open.

DEFINITION ([18]). - A qfh-covering of a variety X is a finite family of quasi-finite morphisms
[ p i ' . X i — ^ X ] such that \[pi: ]J Xi —^ X is a universal topological epimorphism in the Zariski
topology.

A presheafF on the category of varieties is said to be a qfh-sheafifit satisfies the sheaf axiom
for all qfh-coverings [Xz —^ X }:

F(X) = equalizer^ JjF(X,) =^ f]F(X, Xx X,)\.

PROPOSITION 1.2. - The contravariant functor Mor(—,Y) sending a normal variety X to
the set of morphisms to a fixed projective variety Y satisfies the qfh-sheafcondition for all qfh-
coverings {Xi —> X ] with the property that X and each Xi is normal.

Moreover, for any such qfh-covering, the inclusion M.or(X,Y) C Y\Mor(Xi,Y) identifies
Mor(X, Y) as a subspace ofY[ Mor(Xi, Y).

Proof. - By [18, 10.3], it suffices to assume [Xz —^ X] is either a Zariski open covering or a
covering of the form X' —>X where X' is the normalization of X in some finite Galois extension
of the field of fractions k(X) of X. (Following [18], we call this second type of covering a
pseudo-Galois covering.) The (set theoretic) sheaf condition for M.or(—,Y) is evident for a
Zariski open covering.

I f p ' . X ' — ^ X i s s i pseudo-Galois covering with Galois group G, then

equalizer^or^, Y) =t Mor(X' Xx X')} = Mor(X\ Y)0.

To check the sheaf condition for such a pseudo covering, consider a morphism /': X' —> Y which
is G-equivariant. Such a morphism determines a rational map f '.X —^Y since k(X) = k^X')0.
The graph Ff of this rational map (i.e., the closure in X x Y of the morphism defined on some
Zariski open subset of X) has the property that p ' 1 ^ / ) = Fji and is thus quasi-finite as well as
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60 E.M. FRIEDLANDER

birational over X. Since Y is projective, Ff -^ X is also finite and thus Zariski's Main Theorem
implies that Ff —> X is an isomorphism. This implies that / is a morphism as required to verify
the sheaf condition.

To check that the topology on Mor(X,Y) is the subspace topology inherited from
ft Mor(Xi, V), we must verify that a sequence [fn: X -^ Y] converges to /: X -^ Y if each
of the induced sequences [pi o f^: Xi -> Y] converges to pi o f. Once again, it suffices to check
this when {fn} is a Zariski covering and when X' —> Xis^ pseudo-Galois covering with finite
Galois group G. In the case of a Zariski covering, this is clear in view of the fact that a Zariski
open covering is also a covering by open subsets in the analytic topology (so convergence with
respect to the compact-open topology of [fn} to f:X —^ Y is assured) and the finiteness of
the covering {JQ c X] (which assures boundedness of degree). In the case of a pseudo-Galois
covering X' -^ X, we observe that X is a quotient space of X' in the analytic topology so that
convergence of {fn} in the compact-open topology is clear. Moreover, as argued in [7, 1.6], the
boundedness of the degrees of the closures of the graphs of [p o f^} is equivalent to that of
{fn}. D

The following extension technique is a technique of A. Suslin and V. Voevodsky.

PROPOSITION 1.3. -Let F be a contravariant functor defined on normal varieties "which
satisfies the qfti-sheaf axiom when restricted to qfh-coverings of normal varieties by normal
varieties. Then F admits a unique extension as a qfh-sheaf on all varieties.

Moreover, if F takes values in topological spaces and satisfies the condition that the inclusion
F(X) C YiF(Xi) identifies F(X) as a subspace of}\F(X,)for all qfh-coverings of normal
varieties by normal varieties, then F becomes a qfh-sheaf defined on all varieties with values in
topological spaces.

Proof. - The uniqueness of such an extension is clear, since the normalization X~ -^ X of a
variety X is a qfh-covering. To construct the extension, we define F(X) for a general variety X
with normalization X~ —> X as the equalizer

F(X) =: equalizer{F(JT) =^ -F(JT~)},

where X^ —> X" x x X" is the normalization of X~^ x x X^. One readily checks that this satisfies
the sheaf condition for any qfh-covering of any variety using the observation that an equalizer of
a diagram of equalizers is the equalizer of the associated large diagram.

To provide a topology on F(X) for X arbitrary, we give it the subspace topology with respect
to the embedding F(X) c F(X^), where JT -^ X is the normalization of X. With this topology,
if [Xi —^ X] is any qfh-covering, then F(X) so defined has the subspace topology of ]\F(Xi)
in view of the following observation: if T" c T ' and T ' c T are subspaces, then T" c T is also
a subspace (i.e., has the subspace topology). D

Recall that a continuous algebraic map f'.X—^Y with Y projective is a Zariski closed subset
Ff c X x Y with the property that Ff is the graph of a set-theoretic map from X to Y [5]. So
defined, a continuous algebraic map from X to Y is equivalent to a morphism from X^ to V,
where X^ -^ X is the weak normalization of X. (The weak normalization p^: X^ -^ X is
a map which factors the normalization p : JT —> X, which is a homeomorphism on underlying
analytic topological spaces, and which satisfies the condition that the ring of analytic functions
of X^ consists of those continuous functions on X whose composition with p are analytic on
X\)

The following proposition gives some insight into why continuous algebraic maps occurred in
the formulation ofmorphic cohomology theory (cf. [8]).
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BLOCH-OGUS PROPERTIES FOR TOPOLOGICAL CYCLE THEORY 61

PROPOSITION 1.4. -Let Y be a protective variety and let Mor(—,Y) denote the qfh-sheaf
on varieties with values in topological spaces whose value on a normal variety X is the space of
morphisms from X to Y as topologized in Proposition 1.1. Then for any X, the underlying set
of M.or(X, Y) is the set of continuous algebraic maps from X to V.

Proof. - It suffices to show for any variety X with normalization X~ that the set of continuous
algebraic maps from X -^ Y is naturally identified with the equalizer of Mor(X~ , Y) =^
Mor(X^,Y), where X^ -^ X~ Xx X~ is the normalization of X" Xx X~. Since a morphism
^wn __, Y induces a morphism JT -^ V, there is a natural inclusion of this set of continuous
algebraic maps into the equalizer. On the other hand, given a morphism /~ : X^ —^ Y which lies
in the equalizer, we readily verify that its graph Ff~ C X~ x Y projects to a closed subvariety
of X x Y which maps birationally and bijectively to X and therefore represents a continuous
algebraic map. D

DEFINITION. - The topological abelian monoid of effective relative r-cycles on a variety X
with values in a projective variety Y is defined to be

Mor(X,Cr(Y)) =: ]]^Mor{X,Cr,d(Y)).
d

Each f\X-> Cr,d(Y) has an associated graph F f C X x Y which is equi-dimensional of
relative dimension r over X. Sending / to its graph Ff is clearly 1-1. On the other hand, if X^
is not normal, then not every effective algebraic cycle on X x Y equi-dimensional of relative
dimension r over X arises as the graph of such a continuous algebraic map. Thus, our qfh-
sheafification of relative cycles does not give the group of equidimensional cycles over X on an
arbitrary variety X.

2. Topological cycle cohomology and homology

In the preceding section, we constructed the qfh-sheaf Mor(-,Cr(Y)) which takes values
in topological abelian monoids. The purpose of this section is to convert Mor(X,Cr(Y)) to a
bivariant functor which will lead us to definitions of bivariant topological cycle cohomology,
topological cycle cohomology (with supports), and topological cycle homology. As the reader
will quickly see, this section consists primarily of formal definitions. Our somewhat sophisticated
formulation of this theory is justified by the properties we prove in the next two sections.

Notation.-Let Zar denote the big Zariski site consisting of quasi-projective complex
algebraic varieties (whose coverings are Zariski open coverings); for a given variety X, let
Zarx denote the small Zariski site consisting of Zariski open subsets of X. We denote by V
(respectively, Vx) the category of chain complexes bounded below of abelian presheaves on
Zar (respectively, Zarx)', we denote by S (respectively, Sx) the category of chain complexes
bounded below of abelian sheaves on Zar (respectively, Zarx)'

If A is a topological abelian monoid, we denote by A~ the normalized chain complex
associated to the group completion of the simplicial abelian monoid Sing.A obtained by level-
wise group completing the abelian monoids Sing^A. Here, Sing.T denotes the singular complex
of a topological space T, a simplicial set which inherits the structure of a simplicial abelian
monoid provided that T itself has the structure of a topological abelian monoid.

If C^ is a chain complex and n an integer, we denote by C^ [n] the chain complex "shifted to
the left by n"; in other words, (C*[n]), = Ci-n for each i e Z. In other words, if C* is viewed
as a (co-)chain complex with differential of degree +1 and denoted C* (with Q = C"'), then
(C"[n]y =Cn+j.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



62 E.M. FRIEDLANDER

Example. - For any simplicial variety U, let Z^. denote the presheaf denned to send V to
the normalized chain complex of the simplicial abelian group whose value on n e A is the free
abelian group on the set Hom(V,L(n)'

We now introduce the presheaves of chain complexes bounded below which we shall use to
define topological cycle cohomology and homology.

DEFINITION. - For a given non-negative integer s, we define the complex of abelian
presheaves on Zar

M(-, s)=: U ̂  cone{A^r(y,Co(PS-l))~ -^ Mor{U,W))~}[-ls} e P.

Consider a variety X, closed sub variety Y C X, and a non-negative integer s. Let M.{—,s)\x
denote the restriction of M.(—,s) to Zarx' We define the following complexes of abelian
presheaves on Zarx (i.e., objects ofVxY

MY(-,s)=:U^cone{M(U,s)^^M(UnX-Y,s)\x}[-^
£(-, r) =: U ̂  cone{Cr(U^T -^ Cr(XT}[2r],

where X C X is a projective closure and Uoo C X is the Zariski closed complement of
U C X C ~X.

Remark 2.1. - The presheaf £(—,r) € Vx applied to any U € Zarx is a chain complex of
torsion free abelian groups. This follows from the observation that A~ is a chain complex of
torsion free abelian groups whenever the topological abelian monoid A is torsion free.

These presheaves are presheaves of morphic cohomology and Lawson homology groups as
we observe in the following proposition.

PROPOSITION 2.2. - For a normal variety X and any n e Z,

H-, {M(X, s)) = H,n {M(X, 5)jx) - LW(X),

where L^I-l^X) denotes the morphic cohomology ofX as introduced in [8] and formulated
in [6].

For any variety X,

H^(/:(X,r))=L,H^(X),

where L^Hy^(X) is the Lawson homology ofX as in [7].

Proof. - The formulation of morphic cohomology in [6, 2.4],

I/H25-^, s) = TT, ((^(P'XXVCoCP5-1)^))^,

is in terms of the homotopy groups of the "naive topological group completion" of the topological
quotient monoid CoCP^XXVCoCP5"1)^). On the other hand, if A is a topological abelian
monoid, then Sing.A —> (Smg.A)^ is a homotopy theoretic group completion [12, AppQ] and

^((^.A)+)=H,(A'), i^O.

Proposition 1.2 provides a natural isomorphism of the topological abelian monoids CoCP^X-X)
and Mor(X,Co(P8)). Consequently, [6, 1.9, 2.2] establishes that the original formulation of
morphic cohomology agrees with H_^(A^(X, s)).

4e SERIE - TOME 33 - 2000 - N° 1



BLOCH-OGUS PROPERTIES FOR TOPOLOGICAL CYCLE THEORY 63

Similarly, the formulation ofLawson homology in [7, 1.5],

L^+zW = 7Ti{Zr(X)/Zr(X - X)),

is in terms of the homotopy groups of the quotient topological group Zr( X ) / Z r ( X —X\ where
X c X is a projective closure and Zr( X ) is the naive topological group completion of the Chow
monoid Cr( X ). As argued above, the fact that Cr( X ) —^ Zr( X ) is a homotopy theoretic group
completion and that Zr(X — X) —>• Zr(X) —^ Zr(X) yields a distinguished triangle of chain
complexes (cf. [7]) implies that

7Ti{Zr(X))=Hwr(^X,r)). D

Our definition of cohomology and homology will be in terms of maps in the derived category
Vx associated to Sx introduced in the following definition.

DEFINITION. - Let "HP denote the homotopy category of V obtained by identifying maps
of chain complexes related by a chain homotopy. Then TiP has the natural the structure of
a triangulated category -whose distinguished triangles are triples in P, P —> Q —)• R —>• P[l],
which are isomorphic to a triple arising from a short exact sequence of chain complexes
0-^P-^Q-^R-^O.We similarly define the homotopy categories HPx.HS, HSx-

Let P denote the localisation ofP with respect to the thick subcategory of those P G P with
the property that every stalk ofP is acyclic. So defined, T> is isomorphic to the derived category
ofS. We similarly define T>x, ^ localisation of both Vx cmd Sx-

We say that f : P —>• Q in either P, Px, S, or Sx is a quasi-isomorphism if each fibre of both
the kernel and cokernel of / is acyclic.

DEFINITION. - We define the bivariant topological cycle cohomology ofX with values in Y
and weight r to be

W(X;y,r•)=:Hom^(Zx,A/((-;y,r)U•])

where M(-\Y,r)(U) = Mor(U,Cr(Y)T[2r].
We define the topological cycle cohomology ofX with supports in Y C X closed to be

?4(X, s) = Hom^ (Zx, MY(-, s)[j]).

In particular,

W(X, s) = Hom^ (Zx,.M(-, s)[j]).

We define the topological cycle homology ofX in degree i to be

Hi{X, r) == Homp^ (Zx [0 A-^)).

3. Topological cycle homology theory

We begin this section by verifying that topological cycle homology equals Lawson homology.
This enables us to prove the Bloch-Ogus properties (including functoriality) of a "twisted
homology theory" for topological cycle homology theory. On the other hand, our definition in
terms of the derived category is so formulated to fit with topological cycle cohomology theory as
we shall see in later sections.
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64 E.M. FRIEDLANDER

DEFINITION. - P G Px ^ ̂ ;J to be pseudo-flasque provided that

P(U) -. P(£/i) e P(£/2) -^ P(^i n Uz)
is quasi-isomorphic to a distinguished triangle of chain complexes "whenever U\, U-z are Zariski
opens ofU € Zarx with U = U\ U U-z.

The following theorem is the derived category analogue of a theorem of Brown-Gersten
concerning simplicial presheaves.

THEOREM 3.1. -Let 7~iPx denote the homotopy category of the category Px of chain
complexes (of presheaves ofabelian groups on Zarx)- Then for any P € Px, ̂ y ̂  Z

H, (P(X)) = Homnrx (Zx [0 P).

IfP C Px is pseudo-flasque, then for any i G Z the natural map

Homnp^ (ZjdOP) -^ Hom^ (ZxKI,P)

^ a^ isomorphism.

Proof. - The equality H^(P(X)) = Hom^p^ (Zjc[%], P) is essentially immediate.
Let P —^ I in Px be a quasi-isomorphism with J injective (i.e., Iz is an injective presheaf

on Zarx for each z) and let T = cone{P —^ I ] . Since an injective presheaf is flasque, the
octahedral axiom implies that T is pseudo-flasque (assuming P is pseudo-flasque) as well as
acyclic. Hence, the proof of [4, Theoremi'] implies that T(U) is acyclic for all U e Zarx- In
particular, P(X) —^ I(X) is a quasi-isomorphism of chain complexes, so that

Homw^(ZjdaP) =Hom^(Z^[zU) =Hom^(Zx[zU) =Hom^ (Zx[z],P).

D

Theorem 3.1 and the localization theorem in Lawson homology easily imply the following
theorem.

THEOREM 3.2. - Whenever Y C X is a closed subvariety, there is a "localisation" distin-
guished triangle in 1~CPx

(3.1) £(- n r,r) -^ C(-,r) -^ £(- n (X - Y),r) -> C(- n y,r)[l]

for each r ^ 0. Consequently, the presheaf£(—,r) in "HPx is pseudo-flasque, so that

Hi(X, r) == H, (C(X, r)) = L,H,(X),

where LyH^(X) is the Lawson homology ofX as defined in earlier papers (e.g., [7]).
In particular, Hi(X, r) = Ofor i < 0.

Proof. -For any U € Zarx, the localization theorem for Lawson homology [7, 1.6], [17]
asserts that

(3.2) C(Un V,r) ̂  C(U,r) -^ C(U H (X - V),r) -> /;(^ H y,r)[l]

4e SERIE - TOME 33 - 2000 - N° 1



BLOCH-OGUS PROPERTIES FOR TOPOLOGICAL CYCLE THEORY 65

is a distinguished triangle of chain complexes. (We implicitly appeal to Proposition 2.2.) This
immediately implies that (3.1) is a distinguished triangle in P x '

To verify that £(—, r) is pseudo-flasque, it suffices to show for any U\ C U, U^CU in Zarx
with Ui U Ui = U that

£07, r)————^C(U^r)

W^r)——^ C(U, nU2,r)

is homotopy Cartesian. This follows immediately from the localization sequence (3.2), since
U - Uz = £/i - Ui - 0/1 n Uz). n

As observed in [7], Lawson homology is contravariantly functorial for flat maps and
covariantly functorial for proper maps, thereby giving us the Bloch-Ogus properties (1.2) and
(1.2.1) for topological cycle homology.

The following compatibility of this functorial behaviour is (a generalization of) the Bloch-
Ogus property (1.2.2).

PROPOSITION 3.3. - Consider the following Cartesian square of varieties

X'^-^X

p ' P
v v

Yf—g-^Y

with flat horizontal maps of relative dimension e and proper vertical maps. Then for any i C Z
and r ^ 0, the following square commutes

Wr,r+e)^—^(X,r)

^(y'.r+e)^—^^)

Proof. - By Theorem 3.2, it suffices to prove the commutativity of the following square

C^e(X')ICr^e(X1 - X') ^—— Cr(X)/Cr(X - X)

p:! r*Y . Y

C^e(y')IC^e(Y' - Y ' ) ^——— CAY) I CAY - Y)

where Y C Y is a projective closure, X is the closure of X in a projective closure of X Xy V,
Y ' is the closure of Y ' in a projective closure of Y ' x y V, and X is the closure of X' in a
projective closure of X' X y ' x y X Y Xy X. This follows directly from the definitions of flat
pull-back and proper push-forward of cycles. D

Bloch-Ogus require of the localization sequence the following naturality, their property
(1.2.4).
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PROPOSITION 3.4. - Consider the following commutative square

Y'——-X'

'A \<Y Y
y——^x

whose horizontal maps are closed immersions, whose vertical maps are proper, and satisfying
the condition that fv^Y') = Y- Then the following is a commutative ladder of localization exact
sequences

• • • ——^ Hi(Y\ r) ——^ Hi(X\ r) ——^ U,(X' -Y\r) ——^ • • •

fY. f. J.Op*

V y v

• • • ——^ ̂ (V,r) ———^ Hi(X,r) ———^ U^X - Y,r) ———^ • • •

where g : X' - f~\Y) C X' - Y ' .

Proof. - Consider the following commutative diagram whose rows are distinguished triangles
of chain complexes

£(Y\r) ——^ C(X^r) ——^ C(X' - Y\r) ———^ jC(Y\r)[l]

£(y,r) ———^ C(X,r) ———^ C(X - Y,r) ———^ C(X - Y,r)[l].

It suffices to show that the composition C(X'\r) —^ C(X,r) —^ £(X — Y,r) factors through
jC(X\ r) —> C(Xf — V, r). This in turn follows from the observation that

O(Z') ̂  Cr(X) -^ Cr(X)/Cr(X- (X - Y))

factors through Cr(X') -^ Cr(Xf) /'Cr(X1 - (X1 - Y')\ where X C X is a projective closure
and X is the closure of X' in a projective closure of X' x x X. D

4. Topological cycle cohomology theory

We now proceed to consider topological cycle cohomology theory. The excision property
(Theorem 4.3 below) justifies our formulation of this theory in terms of the derived category
^x.

We begin with functoriality of topological cycle cohomology with supports.

PROPOSITION 4.1. -A Cartesian square

Y'——^X'

fY\ \fx

Y Y
y——^x
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of varieties whose horizontal arrows are closed immersions naturally induces a map of graded
groups for all j € Z, s ̂  0:

(/xjy)*:3^y(^^)^®^(^^).
3 3

Frequently, fy will remain implicit, fx will be simply denoted f, and (fx, fvY by /*.

Proof. - Since /*: Px —^ T^x' is exact and preserves quasi-isomorphisms and since Z^/ =
/*Zx, we obtain a natural map

Hom^ {ZX,MY(-, s)[j]) -^ Hom^, (Zx/, /*A^y(-, s)[j]).

The natural map

r.M^CoCP5))^)^ colim Md-^U^W))
v / U'Cf-^U) v /

^^(-^oCP5))^)

induces a map in P^c/ ofpresheaves of chain complexes on Z a r x ' , /*A1y(—, s) —> M.y(—, s).
Functoriality thus follows. D

The next proposition is the assertion of the validity of the first two Bloch-Ogus properties for
the cohomology theory [3, I.I.I, 1.1.2].

PROPOSITION 4.2. - Let Z —>Y —> X be closed immersions. Then for any s ^ 0, there is a
long exact sequence

'••n{(x^)^H{(x^)^n3y_z(x-z,s)-->u3z~\x^)•'•

Moreover, if Z ' — » Y ' —^ X' is another sequence of closed immersions and if

Z ' ——^ Y / ——^ X'

(4.1) fz fY\ \fx
V ^ ^

Z——-Y——-X

is a commutative diagram with Cartesian squares, then (fx^ fzY^ (fx^ /y)*» ̂ d (/x|» /y|)* fit

together to form a commutative ladder of long exact sequences, where

fx\ Jy|: (X' - Z'^ Y' -Zf)-^(X-Z,Y- Z)

is the restriction of fx, fv-
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Proof. - We consider the following commutative diagram in Px whose rows are distinguished
triangles

M-, s) —————^ M(- H (X - Z\ s) —————————^ Mz(-, s)[-l]

M(-, s) —————^ M(- H (X - Y\ s) —————————^ My(-, 5)[-1]

0 ————^ .Mx-y^ H (JC - Z), s)[-1] —=^ .Mx-y(- H (X - Z\ s)[-1]

The octahedral axiom implies that the right vertical column is also a distinguished triangle,
thereby implying the asserted long exact sequence. The naturality of this construction implies
that the commutative diagram (4.1) determines a map of distinguished triangles and thus a
commutative ladder of exact sequences. D

The following excision theorem is the Bloch-Ogus property (1.1.3). This is the property which
requires our somewhat sophisticated definition oftopological cycle cohomology in terms of maps
in the derived category Vx of bounded complexes of presheaves.

THEOREM 4.3. - Let Y C X be a closed subvariety and i: U C X be a Zariski open subset
containing Y. Then the natural map

U^X^^H^U^)

is an isomorphism/or all j e Z, s ^ 0.

Proof. - Consider the following commutative square in Px'-

M(-, s) ———————^ M(- H U, s)

P Pu
^ Y

M(- n (X - Y), s) —^ M(- n (U - Y\ s).

If V e Zarx is sufficiently fine that V is either contained in U or X - V, then the evaluation of
this square on V leads either to a square whose horizontal maps are equalities of chain complexes
or to a square whose vertical maps are equalities. This immediately implies that the map

Mz(-, s) = cone(p)[l] -^ cone(p[/)[l] = Mz(-, s)

is a quasi-isomorphism and hence the statement of the theorem. D

5. Cap product and duality

In this section, we relate our cohomology and homology theories via a cap product and verify
the final property of Bloch-Ogus: Poincare duality for a smooth variety relating topological
cycle cohomology with supports to topological cycle homology. Continuity of the cap product
for possibly singular varieties is somewhat subtle; the necessary arguments can be found in [14].
On the other hand, the duality theorem (for smooth varieties) is a direct consequence of duality
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proved in [6] following [9]. As a consequence, we show that topological cycle cohomology of a
smooth variety equals morphic cohomology.

We begin by sketching the construction of cap product, based on techniques developped in
[14].

PROPOSITION 5.1 (cf. [14, 2.6]). - There is a natural pairing ofpresheaves in Px

(5.1) M(-, s)[2s] (g) £(-,r) -^ £(- x A^r),

where C(— x A5, r) sends U 6 Zarx to

cone{Cr(U^ x ¥8 UX x P5-1)- -. Cr{~X x P5)-}^].

(Here, X C X is aprojective closure and Uoo = X — U.)

Proof. - For U 6 Zarx, we consider the pairing

(5.2) FQI ^^([/.^(P5)) x Cr(U)-^C(U x P5)

which sends the pair (/: U -^ Co(P5), iw '• W C U) to the graph Ff\w ^U xP8 of iw o f for
any irreducible r-cycle W onU. The continuity of this pairing is established (in much greater
generality) in [14, 2.6].

The naturality of (5.2) with respect to U and P5"1 C P5 implies that this pairing induces a
pairing of the form (5.1). D

Using the localization property of Lawson homology, we obtain the following cap product
pairing. We implicitly use the homotopy invariance property of Lawson homology [7] which
asserts that flat pull-back

(5.3) /:(-, r - s)[2s] -^ £(- x A5, r)
is a quasi-isomorphism.

PROPOSITION 5.2. - IfY C X is closed, then the pairing (5.1) induces a natural pairing

Mv(-. s) 0 £(-, r) -^ £(- H V, r - s)

in T>x which yields the following cap product pairing on cohomology/homology

H: H^(X, s) (8) Hn(X, r) -^ Hn-j(Y, r - s)

whenever r ^ s ̂  0, n ̂  j .

Proof. - The naturality of (5.1) enables us to obtain the following commutative diagram in Px
whose columns are distinguished triangles:

My(-, s) 0 £(-, r) ———————^ £(- n Y x A5, r)[-2s]

\ \
(5.4) M(-, s) 0 £(-, r) ————————^ C(- x A5, r)[-2s]

\ \
M(- n (X - Y\ s) (g) £(-, r) ——^ £(- H (X - V) x A5, r)[-2s]
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The asserted pairing on cohomology/homology is obtained from the top row by applying the
following sublemma in conjunction with Remark 2.1. D

SUBLEMMA. -A pairing P (g) Q —> R ofpresheaves in Px induces a pairing

Hom^ (Zx [0 P) 0 Hom^ (Zx [j], Q) -^ Hom^ (Zx [^ + J'L ̂ ),

provided that Q(U) is a complex ofabelian groups without torsion for every U € Zarx-
Proof. - If P —^ P, Q -^ Q are quasi-isomorphisms in Pjc with P, Q projective, then

P<S)Q-^P^Qis also a quasi-isomorphism since each Q(U) is torsion free. Thus, the asserted
pairing is given by the natural pairing

Homnrx (Zx[OP) ̂  Hom^p^ (ZxD'L Q) -^ Hom^p^ (Zx[z +j],P 0 Q).
D

Observe that if X is an irreducible variety of dimension d, then X itself viewed as an effective
d-cycle determines a point of Cd(X) and thus ^fundamental class

(5.5) 7;x C (A^))^.

(By an abuse of notation, we shall also use rjx to denote the associated homology class in
H^dWX, d)).) Moreover, as required by Bloch-Ogus (1.3.4), a"(rjx) = r ] x ' whenever a: X' ->
X is an etale morphism because the flat pull-back of the d-cycle X on X is the d-cycle X' on X ' .

Observe that if X is an irreducible variety of pure dimension d, then the pairing of (5.2)
restricted to rjx ^ WX, d))^

- U r]x : A^(-, s) -> C(-,d - s)[-2d],

is induced by sending a continuous algebraic map f:U-^ Co(P5) to its graph Ff G Cd(U x P6)
for any U e Zarx. Hence, whenever X satisfies the condition that topological cycle cohomology
equals morphic cohomology (e.g., X smooth by Corollary 5.6 below), the induced map is the
duality map of [6,9]

(5.6) P: W(X, s) -^ H2d-j(X, d - s).

PROPOSITION 5.3. - Consider the following Cartesian square of varieties

Y' ——- X'A vY y
Y——^X

whose horizontal arrows are closed immersions and whose vertical arrows are etale. Then the
following square commutes

n^(X,s) ̂ Hn(X,r) ———^ Hn-j(Y,r- s)

c^0a* /T
y ^

U^^X^s) (S)Hn(X\r) ——^ Hn-j(Y\r- s)

for all j, n e Z, r ^ s ̂  0.
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Proof. - Because a* is exact, preserves quasi-isomorphisms, and sends Z^ e Sx to Z^/ e
5^, there is a natural map Hom-p^ (Zjc [z], F) —> Homr^, (Zx' [^], o^) for any F e Px. Thus,
it suffices to prove the commutativity of the following square in T>x' '-

a*.My(-, s) (g) a*£(-, ̂ ) —L^ a*^- H V, r)

(5.7) a*(g)a* /T
Y

A^y/(-5) (g) £(-, r) ——-—^ £(- n V, r)

Using diagram (5.4), we readily see that it suffices to take Y = X, Y ' = X' and to prove
the commutativity in Px' of this special case of (5.7). To prove this, it suffices to prove the
commutativity of the following square of topological abelian monoids whose horizontal maps
are given by (5.2)

roi-
Mo^U^CoV8)) x Cr(U) > Cr(U x P8)

(5.8) OQOJ, a oj" a 03
Y '̂ni- Y

Mor(U1^,Co(P')) x CAU') —— Cr(U1 x P8)

where j: U ' C a^dJ). Finally, the commutativity of (5.8) is verified by observing that the graph
of / o a o j: U ' -^ U -> Co(P8) restricted to Z ' = U ' Xx Z, Fjoaojiz' ^ Cr{U' x P5), equals the
pull-back via (a o j x 1): U ' x P8 -^ U x P5 of r^z ^ Cr(U x P8). D

The following "projection formula" is the Bloch-Ogus property (1.3.3).

PROPOSITION 5.4. - Consider the Cartesian square of varieties

Z——^W•\ \'Y Y
Y——^X

whose horizontal maps are closed immersions and whose vertical maps are proper. Then for any
aeH^(X,s),zeHn(W,r),

an/^)=^(/*(a)n4

Proof. - Observe that Theorem 3.1 implies that

Homp^ (Z^[z], /*/:(-, r)) =H,(/*/;(lV,r)) =H,(£(X,r)) =Hi(X,r)

since /*£(—, r) C Pw is pseudo-flasque. Hence, as in the proof of Proposition 5.3, it suffices to
consider the diagram in Pw of natural maps

M(-, s) 0 £(-, r) ——n—^ £(- x A5, r)[-2s]

(5.9) rt I/, f.
rM(-, s) 0 /*£(-,r) ——^ /*£(- x A5, r)[-2s]
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Homp^ (ZH. [i], M(-, s)) 0 Homr»^ (Zw [J], A-, ?')) ————^ Hom^ (ZH. [% + j], /:(-, r))

Hom^?^(Zw[%]J*A/f(-,s))0Hom^^(ZH.[J•], /*/:(-, -r))———^ Hom^(Z^[%+j],/*/:(-, r))

Hom-p^ (Zx [i], M{-, s)) (g) Homr)^ (Zx W, ̂ (-,r)) —————^ Hom^ (Zx [% + j], C(-, r))

DIAGRAM D.

and to show for any V G Zarw, any a e f*M(V, s), any s e C(V, r) that

^n^(^)=/,(/*an^).

This will provide the "commutativity" of Diagram (D). To analyze (5.9), it suffices to consider
the following diagram of topological abelian monoids for any U € Zarx, V e Zarw with
i:Vcf-\U):

Mo^V^CoV^x Cr(V) ——^ Cr(V x P8)
A |

(5.10) 0/01 I ^ O ^ ( / X I ) ^ O ( Z X I ) ^

I y v
Mor(U,W))x Cr(U) ——^ Cr(U x P5)

We readily verify for any Z e Cr(V\ 0 € Mor(U,Co(P8)) that

(/ x i)* o (z x i)*(r^joz|z) = r^f^zv

We interpret this equality as asserting the "commutativity" of (5.10) and thus the analogous
"commutativity" of (5.9). D

The next Bloch-Ogus property is the following assertion of Poincare duality.

THEOREM 5.5. -Assume that X is a smooth variety of dimension d and Y C X is a closed
subvariety. Then cap product with the fundamental class rjx ^ H2d(£(X, d))

- H rjx : U^X, s) -^ H2d-j(Y, d-s)

is an isomorphism.

Proof. - The duality theorem of [6,9] implies that

- H rjx : M(-, s)[2s] -> £(- x A6, d)[-2d]

is a quasi-isomorphism. Applying homotopy invariance (cf. (5.3)), we conclude

(5.11) -nrjx:M(-,s)-^C(-,d-s)[-2d]
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is a quasi-isomorphism. This extends to a map of distinguished triangles

My(-, s) ———^ C(- H V, d - s)[-2d]

\ I
M(-,s)————^£(-,d-s)[-2d]

\ \
M(- n u, s) —^ C(- n u, d - s)[-2d}.

whose horizontal maps are quasi-isomorphisms, where U = X — Y. D

The quasi-isomorphism (5.11) in conjunction with Corollary 3.2 immediately implies the
following equality of morphic cohomology and topological cohomology for smooth varieties.

COROLLARY 5.6. -If X is a smooth variety and Y a closed subvariety, then the presheaf
Mory(—, s) in Sx is pseudo-flasque. In particular ifX is smooth, then

nj(x,s)^LSW(X),

where the right hand side is morphic cohomology as defined in earlier papers.

The final Bloch-Ogus property [3, 1.5] verifies the triviality of the cycle class of a principal
divisor.

PROPOSITION 5.1.-If X is a smooth variety of pure dimension d and if z'.W —> X is
a principal divisor, then the image i^(r]w) ^ Zd-\(X) of the fundamental class of W is
homologically trivial'.

i^r]w)=0 e H2d-2(X,d-l).

Proof. - We recall the existence of a Gysin map %^y : Zr(X) —> Zr-i(W) whose composition
with ̂  : Zr(W) —^ Zr(X) depends (in the derived category) only upon the line bundle of which
W is the zero locus of a global section [7, 2.4]. If W is principal, then L is the trivial line bundle
so that this composition is 0. On the other hand, i^(r]x) = f]w [7, 2.4]. D

6. Relationship to singular cohomology/homology

As observed in previous papers (esp., [8,12]), there are natural maps from morphic
cohomology on normal varieties to singular cohomology and from Lawson homology to Borel-
Moore homology. In this section, we confirm that these maps are naturally formulated in our
context of derived categories of presheaves and thereby extend to our more general setting. As
we see, these maps are often compatible with cap product in singular homology/cohomology
theory (a result generalizing the main result of [11]).

We refer the reader to [11] for a quick sketch of integral cycles, Lipschitz neighborhood
retracts, and related matters.

DEFINITION. - For any variety X, we denote by

e: Anx —'• T^irx
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the natural morphism of sites, where Anx is the site -whose objects are analytic open subsets of
X and whose morphisms are inclusions. (The functor e is associated to the fact that every Zariski
open sbset of X is also an analytic open subset.)

We let P^ denote the triangluated category ofpresheaves on Anx with values in the abelian
category of chain complexes bounded below of abelian groups. We denote by V^ the localisation
ofP^ by the thick subcategory of those P e V^ each fibre of which is acyclic.

Observe that

e^.Px->P^
is an exact functor which induces

e^.Vx^V^

since each fibre of £*P <E P^ is acyclic whenever each fibre of P e Px is acyclic.

DEFINITION. - We define the pre sheaf

Hom(-,2s)=: [/^cone^omcontC^oCP'"1)^ ̂ Homcont^^P5))^-^]

where Homcont(^-P) denotes the mapping space of continuous maps from U to P (each with
the analytic topology) given the compact-open topology and where Zo(P) = Co(P)^~ denotes the
naive topological group completion of the topological monoid Co(P).

We define the presheaf

Z(-,m)='.U^(Zm(Xr/Zm(X-U)Y[m]

where X C X is a projective closure and where Zm(Y) denotes the topological abelian group
of integral m-cycles on Y (in the sense of geometric measure theory) provided with the flat-norm
topology.

The following proposition interprets singular cohomology/homology in terms similar to our
formulation of topological cycle theory.

PROPOSITION 6.1.- For any variety X, the presheaves

Uom(-, Is), Z(-, m) e P^

are pseudo-flasque. Moreover, for any U e Anx,

(6.1) Hom^ (Zx, Uom(-, ls)[j}} = H_^ (Hom(U, 2s)) = W(X\ j ̂  2s,

(6.2) HomD^(Zx[^}^(-,m))=Hi{Z(U,m))=HBM(U), i ̂  m,

where H*(?7) and Hf^LQ denote the singular cohomology and Borel-Moore homology ofU
(considered with its analytic topology).

Proof. - Let K(Z, n) denote the Eilenberg-MacLane space with unique non-vanishing
homotopy group Z in degree n, represented for example by the infinite symmetric power SP^)
of the n-sphere. Since ZoCP5"1) -^ Zo(P8) can be identified with the natural embedding

S-1 S

1[[K(Z,2i)-^Y[K(Z,2i\
i=0 i=0
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7~iom(—, 2s)[2s] is isomorphic in V^ to the presheaf U i—> Homcont(^\ ̂ (Z, 2s)). As in the proof
of Proposition 3.2, in order to prove (6.1) it suffices to show that

Homcont(^ K(Z, 2s)) ——^ Homcont(^i, K(Z, 2s))

(6.3) |
v ^

Homcont(^2, K(Z, 2s)) ——^ Honw(^3, K(Z, 2s))

is homotopy Cartesian, whenever [/i, [/2 C U in An^ with U =U\^U^U^=U\^}U^. Since

7r,(Homcont(^^(Z,25))) = H25-^),

the fact that (6.3) is homotopy Cartesian (and the validity of (6.1)) follows immediately from
Mayer-Vietoris for singular cohomology.

A well known theorem ofF. Almgren's [1] implies that

7n(Zm(X))=H^m(X).

As above, Mayer-Vietoris (this time for singular homology) implies that Z(—,m) is pseudo-
flasque and provides the equalities of (6.2). D

PROPOSITION 6.2. - For any variety X, there are naturally constructed maps in P^

e"M(-,s)^nom(-,2s)

£*£(-, r)^Z(-,2r)

which determine natural maps

^ : W(X, s) -^ W(X\ <?, : Hi(X, r) -^ ̂ ^(X).

Proof. - By Proposition 6.1 and the fact that £* is exact and preserves weak equivalences, in
order to construct <F* and <^ it suffices to exhibit the asserted maps in PJ?. For this, it suffices to
exhibit natural maps for any U € Zarx

M(U, s) -^ Hom(U, 2s\ £(U, r) -> Z(U, 2r).

The first is induced by the natural inclusion Mor(U,Co(P)) —^ Homcont(^\ ZQ(P)) (induced by
Co(P) -^ CQ(P)~^ = Zo(P)) and the second by the natural inclusion Zr(X) C ZirCX). D

The "duality map" relating morphic cohomology and Lawson homology is induced by the
construction which sends a continuous algebraic map to its graph (cf. [9]). In view of (5.6), this
can be interpreted as cap product in topological cycle theory with the fundamental class of X.
The basic result of [11] (namely, [11,5.5]) is the assertion that if X is a projective, normal variety
then this duality map is compatible with cap product with the fundamental class from singular
cohomolgy to singular homology. The following compatibility theorem (more general than that
of [11]) is an easy consequence of [11, 5.5] in conjunction with Proposition 5.4.

PROPOSITION 6.3. -Let X be a projective variety. Then the natural maps of (6.2) are
compatible with cap product with fundamental classes of algebraic cycles in the sense that the
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following square commutes

W(X, S) 0 ̂ 2r(X, r) -^ 7^2r-2s+,(^, r - s)

(6.4) ^(gx^ <?>„
v ^

H^X) (g) H2^(X) ——-——^ H2^-2.+j(X)

forr^s^0,j^ 2s.

Proof. - Let ^': Y C X be the closed embedding of an irreducible subvariety of dimension
r, let clx(Y) e H^rWX^r)) denote its associated cycle class, and let [V] denote cly^Y).
Let p:y~ —> Y denote the normalization of Y and observe that z*([V~]) = clx(Y), where
i = j o p:Y^ —^ X. Then the commutativity of (6.4) follows from the following chain of
equalities for any a e 'W{X, s)\

^ (a H dx(Y)) = ̂  (z, (z*a H [V~])) = z, (^*(z*a) n ̂ ([V])) = ̂ *(a) n ̂  (c^W)

where the first equality follows from Proposition 5.4, the second from [11, 5.5], and the third
from the analogue in singular theory of Proposition 5.4. D

7. Local to global spectral sequence

Since we have shown that topological cycle theory satisfies all of the properties Bloch and
Ogus require of a "Poincare duality theory with supports", their analysis implies the validity
of "Gersten's Conjecture" for topological cycle cohomology (Theorem 7.1) and thus a local to
global spectral sequence (Theorem 7.2).

We denote by W(s) the sheaf associated to the presheafon Zarx sending U to W(U, s).

THEOREM 7.1 (cf. [3,4.2.2]). - For any smooth variety X, there is a resolution of sheaves on
Zarx

0 -> U\s) -^ (]) i^H3 (Spec k(x\ s) -. (]) W1 (Spec k(x\ s - l)
codim(o;)==0 codim(.r)=l

-^•••^ Q z^°(Spec^),5-j)-.0,
codim(a0=j

where i^A denotes the extension by zero from [ x ] to X of the constant sheaf with value the
abelian group A on the closure [ x ] of the (Zariski) point x e X.

THEOREM 7.2 (cf. [3, 6.2]). - Let X be a smooth variety. Then there is a natural spectral
sequence

EM = KL^W)) ̂  W^^).

Moreover, the filtration {^^^(JC,^)} on ̂ (X^s) associated to this spectral sequence is the
arithmetic filtration given by

FPHn(X, s) = \JKer{/Hn(X, s) -^ H^X - Z, s)},
z

where the union is taken over all closed subvarieties Z C X of codimension p.
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We give one corollary of this theorem, a vanishing result confirming in this special case the
expected vanishing range of Lawson homology. Namely, one expects that if X is a smooth variety
of dimension d, then Hi(X, *) = 0 for i > 2d. By duality, this is equivalent to the expectation
that topological cycle cohomology should vanish in negative degrees.

COROLLARY 7.3. - Let X be a smooth, rational 3-fold. Then

W(X,2)=0, j<0.

Proof. - By Theorem 7.2, it suffices to prove that W(U, 2) = 0, j < 0, for all sufficiently small
U C Zarx. Since X is rational, this is implied by the assertion that W(Y, 2) = 0, j < 0, for all
V C P3. By duality (i.e.. Theorem 5.5), it suffices to verify that H,(£(V, 1)) = 0, i > 6. Using
the localization sequence (associated to the distinguished triangle of Theorem 3.2) in conjunction
with the vanishing H^(£(P3,1)) = 0, i > 6, as shown in [16], we conclude that it suffices to prove
that Hi(C(Y, 1)) == 0, i > 6, for any closed proper subvariety Y C P3.

Indeed, we show that Hi(C(Y, 1)) = 0, i > 4, for any closed proper subvariety Y C P3.
Applying localization to the closed embedding of the singular locus Vsing C Y with Zariski
open complement Yns and observing that ZiC^sing) is discrete, we conclude that it suffices to
assume that Y is smooth and possibly quasi-projective. Applying resolution of singularities to
the projective closure Y of Y and localization once again, we conclude that it suffices to recall
the computation of Lawson homology for divisors on a smooth, projective variety given in [6,
4.6]. D

The proof of Corollary 7.3 shows somewhat more. Namely, the vanishing of topological cycle
cohomology in negative dimensions and weight two less than the dimension of X depends only
upon the birational class of X.

8. Gillet's axioms

In this final section, we sketch how our topological cycle theory satisfies the axioms of H.
Gillet [15], thereby presumably implying the existence ofchern classes with values in topological
cycle cohomology theory and a Riemman-Roch formula.

Gillet requires a graded complex .T*(*) of sheaves on the big Zariski site Zar. We take

r'(s)=M(-,s)zar

the sheafification of the complex M(—,s) of presheaves on Zar. Gillet further requires the
existence of an associative, (graded) commutative pairing

r*(*)t)r*(*)^r*(*).

Such a pairing is established in [14, 3.1], using the join pairing of [8].
Gillet then postulates a list of axioms [15,1.2]. The first is given by Proposition 3.3, the second

by Proposition 3.4, and the third by Proposition 5.4. The existence of a functorial fundamental
class r]x is stated in (5.3), whereas Theorem 5.5 provides the duality isomorphism required in
Gillefs fifth axiom.

Gillet's sixth axiom is the condition that the duality isomorphism of Theorem 5.5 arises from
a map of complexes (in the derived category); indeed, this is shown in the proof of Theorem 5.5.
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Similarly, his seventh axiom is the condition that the projection formula arise from a diagram of
complexes as shown in the proof of Theorem 5.5. There is no requirement given in axiom eight.

Gillet's ninth axiom, (1.2.ix), is the condition ofhomotopy invariance for cohomology. Since
Lawson homology is homotopy invariant [7, 2.3], this homotopy invariance for topological cycle
cohomology of smooth varieties is valid thanks to duality. More generally, this axiom does not
appear to hold.

Axiom ten follows from the projective bundle theorem of [7, 2.5]. The final Gillet axiom,
(1.2.xi) is essentially the existence of a first Chern class Pic(-) —> 'H2(—, 1). For a line bundle
L generated by its global sections, c\(L) was exhibited in [8]; more generally, any line bundle L
on a quasi-projective variety X locally closed in some projective space P^ has the property that
L (^ 0(m) is generated by its global sections for m sufficiently large, so that we may define

ci(L) = ci (L 0 0(m)) - a (0(m)).

A more precise version of Gillet's first Chern class axiom is formulated in terms of the
existence of a morphism 0*[-1] -^ r*(l) in Vx such that [Opi(l)] <E H^P^ 0*[-1]) is sent
to ci(Opi). Using [13], we observe that 0*[—1] can be realized in Vx as the sheaf of chain
complexes associated to the group completion of the sheaf of simplicial abelian moniods

U ̂  Mor(U x A*,Co(P1)) /'Mor(U x A\Co(P°)).

Thus, the natural map from the algebraic singular complex to the topological singular complex
of the topological abelian monoid A4or(U,Co(P1)) determines a natural map from 0*[—1] to
£*(!).
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