Yau, Shing-Tung
Isoperimetric constants and the first eigenvalue of a compact riemannian manifold
Annales scientifiques de l'École Normale Supérieure, Série 4 : Tome 8 (1975) no. 4 , p. 487-507
Zbl 0325.53039 | MR 53 #1478 | 6 citations dans Numdam
doi : 10.24033/asens.1299
URL stable : http://www.numdam.org/item?id=ASENS_1975_4_8_4_487_0

Bibliographie

[1] M. Berger, P. Gauduchon, et E. Mazet, Le spectre d'une variété riemannienne (Lecture Notes in Math., N°. 194, Springer). MR 43 #8025 | Zbl 0223.53034

[2] R. Bishop and R. Cristtenden, Geometry of Manifolds, Academic Press, 1964. Zbl 0132.16003

[3] J. D. Burago and V. A. Zalgaller, Isoperimetric Problems for Regions on a Surface Having Restricted Width (Proceedings of Stek. Inst. Math., N°. 76, 1965.) MR 34 #1972 | Zbl 0167.50802

[4] I. Chavel and E. Feldman, The First Eigenvalue of the Laplacian on Manifolds of Non-Negative Curvature (to appear).

[5] J. Cheeger, The Relation Between the Laplacian and the Diameter for Manifolds of Non-Negative Curvature (Arch. der Math., Vol. 19, 1968, p. 558-560). MR 38 #6503 | Zbl 0177.50201

[6] J. Cheeger, A Lower Bound for the Smallest Eigenvalue of the Laplacian, In “Problems in Analysis, a symposium in honor of S. Bochner”, Princeton University Press, 1970. Zbl 0212.44903

[7] S. Y. Cheng, Eigenfunctions and Eigenvalues of Laplacian (to ppear in the Proceedings of Symposium on Differential Geometry). Zbl 0308.35076

[8] S. Y. Cheng, Eigenvalue Comparison Theorems and its Geometric Applications (Math. Z., Vol. 143, 1975, p. 289-297.) MR 51 #14170 | Zbl 0329.53035

[9] L. Keen, Collars on Riemann Surfaces, In “Discontinuous Groups and Riemann Surfaces”, edited by by GREENBERG, Princeton University Press, 1974, p. 263-268. MR 52 #738 | Zbl 0304.30014

[10] A. Huber, On the Isoperimetric Inequality on Surfaces of Variable Gaussian Curvature (Ann. of Math., Vol. 60, 1954, p. 237-247). MR 16,508d | Zbl 0056.15801

[11] J. Hersch, Caractérisation variationnelle d'une somme de valeurs propres consécutives (C. R. Acad. Sc., t. 252, 1961, série A, p. 1714-1716). MR 23 #A3362 | Zbl 0096.08602

[12] E. Mazet, Une majoration de λ1 du type de Cheeger (C. R. Acad. Sc., t. 277, série A, 1973). MR 50 #14581 | Zbl 0264.53021

[13] H. P. Mckean, An Upper Bound to the Spectrum on a Manifold of Negative Curvature (J. of Diff. Geom., Vol. 4, 1970, p. 359-366). MR 42 #1009 | Zbl 0197.18003

[14] H. Federer, Geometric Measure Theory, Springer, 1969. MR 41 #1976 | Zbl 0176.00801

[15] F. Warner, Extensions of the Rauch Comparison Theorem to Submanifolds (Trans. Amer. Math. Soc., Vol. 122, 1966, p. 341-356). MR 34 #759 | Zbl 0139.15601

[16] D. Hoffman, and J. Spruck, Sobolev and Isoperimetric Inequalities for Riemannian Submanifolds (to appear). Zbl 0295.53025

[17] J. Michael, and L. Simon, Sobolev and Mean Value Inequalities on Generalized Submanifolds of Rn (Comm. Pure and Appl. Math., 1973, p. 361-379). MR 49 #9717 | Zbl 0256.53006

[18] L. Green, A Theorem of E. Hopf (Mich. Math. J., Vol., 5, 1958, p. 31-34). MR 20 #4300 | Zbl 0134.39601

[19] J. Cheeger, and D. Gromoll, The Splitting Theorem for Manifolds of Non-Negative Ricci Curvature (J. Diff. Geom., Vol. 6, 1971, p. 119-128). MR 46 #2597 | Zbl 0223.53033

[20] J. Milnor, A Note on Curvature and Fundamental Group (J. Diff. Geom., Vol. 2, 1968, p. 1-8). MR 38 #636 | Zbl 0162.25401

[21] H. S. Ruse, A. G. Walker, and T. J. Willmore, Harmonic Spaces, Edizioni Cremonese, Roma. Zbl 0134.39202

[22] A. C. Allamigeon, Propriétés globales des espaces riemanniens harmoniques (Ann. Inst. Fourier, Vol. 15, N°. 2, 1965, p. 91-132). Numdam | MR 33 #6549 | Zbl 0178.55903

[23] C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966. MR 34 #2380 | Zbl 0142.38701

[24] W. Klingberg, Contributions to Riemannian Geometry in the Large (Ann. Math., Vol. 69, 1959, p. 654-666). MR 21 #4445 | Zbl 0133.15003