Π 2 - Théorie des ensembles
Annales scientifiques de l'Université de Clermont. Mathématiques, Volume 73 (1982) no. 21, p. 15-45
@article{ASCFM_1982__73_21_15_0,
     author = {Pabion, J.-F.},
     title = {$\Pi \_2$ - Th\'eorie des ensembles},
     journal = {Annales scientifiques de l'Universit\'e de Clermont. Math\'ematiques},
     publisher = {UER de Sciences exactes et naturelles de l'Universit\'e de Clermont},
     volume = {73},
     number = {21},
     year = {1982},
     pages = {15-45},
     zbl = {0574.03040},
     language = {fr},
     url = {http://www.numdam.org/item/ASCFM_1982__73_21_15_0}
}
Pabion, J.-F. $\Pi _2$ - Théorie des ensembles. Annales scientifiques de l'Université de Clermont. Mathématiques, Volume 73 (1982) no. 21, pp. 15-45. http://www.numdam.org/item/ASCFM_1982__73_21_15_0/

[1] J. Barwise (1975) - Admissible sets and structures - Springer - Berlin. | MR 424560 | Zbl 0316.02047

[2] R. Dalin (1979) - Une théorie locale des ensembles: Π2- ZF - Forcing dans cette théorie- Thèse de 3e Cycle - LYON.

[3] Drake (1974)- Set theory: an introduction to large cardinals- North-Holland- Pub. | Zbl 0294.02034

[4] H. Gaifmann (1972)-A note on models and submodels of arithmetic- Conf. in Math. Logic - London 1970 - Lectures Notes in Math. - Vol. 255 - Springer Berlin - pp. 128-144. | MR 419215 | Zbl 0255.02058

[5] M. Guillaume (1977) - Some remarks in set theory - Math. Logic - Proceedings of the 1st Brazilian conference- Dekker Inc. - New-York. | MR 510979 | Zbl 0398.03041

[6] D.G. Goldrei, A. Mac Intyre and H. Simmons (1973) - The forcing companions of number theories - Isr. J. Math. - Vol.14 - pp. 317-337. | MR 327511 | Zbl 0301.02054

[7] J. Hirschfeld (1975) - Forcing - Arithmetic and Division Rings - Lectures Notes in Math. Vol. 454 - Springer Berlin. | MR 505452 | Zbl 0304.02024

[8] J. Myhill and D. Scott (1971) - Ordinal definability-Axiomatic set theory- Proceedings of symp. in pure Math. - Providence - pp. 271-278. | MR 281603 | Zbl 0226.02048

[ 9] J.F. Pabion (1978) - V = HC ? Non publié.

[ 10] M.O. Rabin (1962) - Diophantine equations and non-standard models of arithmetics- Proceedings of the 1960 Int. Cong. in Logic. Math. and Ph. Sc. - Stanford University Press - pp. 151-158. | MR 153577 | Zbl 0149.24603

[11] M.O. Rabin (1961)- Non-standard models and the independance of induction axiom-Essays on the found. of Math. - The Magness Press - Jerusalem - pp. 287-299. | MR 161795 | Zbl 0143.01001

[12] R. Shoenfield (1967) - Mathematical Logic - Addison Wesley. | MR 225631 | Zbl 0155.01102

[ 13] A. Wilkie (1973) - On models of arithmetic- J.S.L. - Vol. 40 - pp. 41-47. | MR 429547 | Zbl 0319.02050