@article{ASCFM_1976__60_13_135_0, author = {Schmitt, Peter H.}, title = {The model-completion of {Stone} algebras}, journal = {Annales scientifiques de l'Universit\'e de Clermont. Math\'ematiques}, pages = {135--155}, publisher = {UER de Sciences exactes et naturelles de l'Universit\'e de Clermont}, volume = {60}, number = {13}, year = {1976}, mrnumber = {465857}, zbl = {0352.02040}, language = {en}, url = {http://www.numdam.org/item/ASCFM_1976__60_13_135_0/} }
TY - JOUR AU - Schmitt, Peter H. TI - The model-completion of Stone algebras JO - Annales scientifiques de l'Université de Clermont. Mathématiques PY - 1976 SP - 135 EP - 155 VL - 60 IS - 13 PB - UER de Sciences exactes et naturelles de l'Université de Clermont UR - http://www.numdam.org/item/ASCFM_1976__60_13_135_0/ LA - en ID - ASCFM_1976__60_13_135_0 ER -
%0 Journal Article %A Schmitt, Peter H. %T The model-completion of Stone algebras %J Annales scientifiques de l'Université de Clermont. Mathématiques %D 1976 %P 135-155 %V 60 %N 13 %I UER de Sciences exactes et naturelles de l'Université de Clermont %U http://www.numdam.org/item/ASCFM_1976__60_13_135_0/ %G en %F ASCFM_1976__60_13_135_0
Schmitt, Peter H. The model-completion of Stone algebras. Annales scientifiques de l'Université de Clermont. Mathématiques, Volume 60 (1976) no. 13, pp. 135-155. http://www.numdam.org/item/ASCFM_1976__60_13_135_0/
[ 1 ] Stone lattices I. Construction theorems. Canad. J. Math. 21 (1969) 884-894. | MR | Zbl
[ 2 ] Lattice Theory. W.H. Freeman Co. San Francisco 1971. | Zbl
[ 3 ] The structure of pseudo-complemented distributive lattices I. Subdirect decomposition. Trans. Amer. Math. Soc. 156 (1971) 335-342. | MR | Zbl
[4] Stone lattices: a topological approach Fund. Math. 84 (1974) 127-143. | MR | Zbl
[5] Introduction to model theory and the metamathematics of algebra. North Holland P.C. Amsterdam 1963. | MR | Zbl
[ 6 ] Saturated Model Theory. W.A. Benjamin, Inc. Reading, Massachusetts 1972. | MR | Zbl
[7] Boolean Algebras. Springer-Verlag, Berlin-Heidelberg-New York 1969. | MR | Zbl