We prove that a sum of two odd irreducible two-dimensional Galois representations with squarefree relatively prime Serre conductors is attached to a Hecke eigenclass in the homology of a subgroup of , with the level, nebentype, and coefficient module of the homology predicted by a generalization of Serre’s conjecture to higher dimensions. To do this we prove along the way that any Hecke eigenclass in the homology of a congruence subgroup of a maximal parabolic subgroup of has a reducible Galois representation attached, where the dimensions of the components correspond to the type of the parabolic subgroup. Our main new tool is a resolution of by -modules consisting of sums of Steinberg modules for all subspaces of .
Keywords: Galois representations, arithmetic homology
Ash, Avner 1 ; Doud, Darrin 2
CC-BY 4.0
@article{AMBP_2018__25_2_207_0,
author = {Ash, Avner and Doud, Darrin},
title = {Reducible {Galois} representations and arithmetic homology for $\protect \mathrm{GL}(4)$},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {207--246},
year = {2018},
publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
volume = {25},
number = {2},
doi = {10.5802/ambp.375},
language = {en},
url = {https://www.numdam.org/articles/10.5802/ambp.375/}
}
TY - JOUR
AU - Ash, Avner
AU - Doud, Darrin
TI - Reducible Galois representations and arithmetic homology for $\protect \mathrm{GL}(4)$
JO - Annales mathématiques Blaise Pascal
PY - 2018
SP - 207
EP - 246
VL - 25
IS - 2
PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR - https://www.numdam.org/articles/10.5802/ambp.375/
DO - 10.5802/ambp.375
LA - en
ID - AMBP_2018__25_2_207_0
ER -
%0 Journal Article
%A Ash, Avner
%A Doud, Darrin
%T Reducible Galois representations and arithmetic homology for $\protect \mathrm{GL}(4)$
%J Annales mathématiques Blaise Pascal
%D 2018
%P 207-246
%V 25
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://www.numdam.org/articles/10.5802/ambp.375/
%R 10.5802/ambp.375
%G en
%F AMBP_2018__25_2_207_0
Ash, Avner; Doud, Darrin. Reducible Galois representations and arithmetic homology for $\protect \mathrm{GL}(4)$. Annales mathématiques Blaise Pascal, Tome 25 (2018) no. 2, pp. 207-246. doi: 10.5802/ambp.375
[1] Galois representations attached to mod cohomology of , Duke Math. J., Volume 65 (1992) no. 2, pp. 235-255 | MR | DOI
[2] Unstable cohomology of , J. Algebra, Volume 167 (1994) no. 2, pp. 330-342 | MR | DOI
[3] Direct sums of characters of and the homology of , Commun. Algebra, Volume 41 (2013) no. 5, pp. 1751-1775 | MR | DOI
[4] Comparison of Steinberg modules for a field and a subfield, J. Algebra, Volume 507 (2018), pp. 200-224 | MR | DOI
[5] Reducible Galois representations and the homology of , Int. Math. Res. Not., Volume 5 (2014), pp. 1379-1408 | MR
[6] Galois representations attached to tensor products of arithmetic cohomology, J. Algebra, Volume 465 (2016), pp. 81-99 | MR | DOI
[7] Relaxation of strict parity for reducible Galois representations attached to the homology of , Int. J. Number Theory, Volume 12 (2016) no. 2, pp. 361-381 | MR | DOI
[8] Galois representations with conjectural connections to arithmetic cohomology, Duke Math. J., Volume 112 (2002) no. 3, pp. 521-579 | MR | DOI
[9] Torsion in the cohomology of congruence subgroups of and Galois representations, J. Algebra, Volume 325 (2011), pp. 404-415 | MR | DOI
[10] An analogue of Serre’s conjecture for Galois representations and Hecke eigenclasses in the mod cohomology of , Duke Math. J., Volume 105 (2000) no. 1, pp. 1-24 | MR | DOI
[11] Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues, J. Reine Angew. Math., Volume 365 (1986), pp. 192-220 | MR
[12] Modular representations of , symmetric squares, and mod- cohomology of , J. Algebra, Volume 222 (1999) no. 2, pp. 376-399 | MR | DOI
[13] Corners and arithmetic groups, Comment. Math. Helv., Volume 48 (1973), pp. 436-491 | MR | DOI | Zbl
[14] Cohomology of groups, Graduate Texts in Mathematics, 87, Springer, 1994, x+306 pages | MR
[15] The composition factors of as a -module, J. Algebra, Volume 147 (1992) no. 2, pp. 411-441 | MR | DOI
[16] The weight in a Serre-type conjecture for tame -dimensional Galois representations, Duke Math. J., Volume 149 (2009) no. 1, pp. 37-116 | MR | DOI
[17] Modular representations of finite groups of Lie type, London Mathematical Society Lecture Note Series, 326, Cambridge University Press, 2006, xvi+233 pages | MR
[18] Serre’s modularity conjecture. I, Invent. Math., Volume 178 (2009) no. 3, pp. 485-504 | MR | DOI
[19] Serre’s modularity conjecture. II, Invent. Math., Volume 178 (2009) no. 3, pp. 505-586 | MR | DOI
[20] Modularity of 2-adic Barsotti-Tate representations, Invent. Math., Volume 178 (2009) no. 3, pp. 587-634 | MR | DOI
[21] A course in the theory of groups, Graduate Texts in Mathematics, 80, Springer, 1996, xviii+499 pages | MR | DOI
[22] On torsion in the cohomology of locally symmetric varieties, Ann. Math., Volume 182 (2015) no. 3, pp. 945-1066 | MR | DOI
[23] Sur les représentations modulaires de degré de , Duke Math. J., Volume 54 (1987) no. 1, pp. 179-230 | MR | DOI
[24] Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, 11, Princeton University Press, 1994, xiv+271 pages | MR | Zbl
Cité par Sources :





