ANNALES MATHÉMATIQUES

Avner Ash \& Darrin Doud

Reducible Galois representations and arithmetic homology for GL(4)

Volume 25, n ${ }^{\circ} 2$ (2018), p. 207-246.
http://ambp.cedram.org/item?id=AMBP_2018_25_2_207_0
© Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal, 2018, Certains droits réservés.

L'accès aux articles de la revue « Annales mathématiques Blaise Pascal » (http://ambp.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://ambp.cedram.org/legal/).

Publication éditée par le laboratoire de mathématiques Blaise Pascal de l'université Clermont Auvergne, UMR 6620 du CNRS

Clermont-Ferrand - France

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

Reducible Galois representations and arithmetic homology for GL(4)

Avner Ash
Darrin Doud

Abstract

We prove that a sum of two odd irreducible two-dimensional Galois representations with squarefree relatively prime Serre conductors is attached to a Hecke eigenclass in the homology of a subgroup of $G L(4, \mathbb{Z})$, with the level, nebentype, and coefficient module of the homology predicted by a generalization of Serre's conjecture to higher dimensions. To do this we prove along the way that any Hecke eigenclass in the homology of a congruence subgroup of a maximal parabolic subgroup of GL (n, \mathbb{Q}) has a reducible Galois representation attached, where the dimensions of the components correspond to the type of the parabolic subgroup. Our main new tool is a resolution of \mathbb{Z} by $\operatorname{GL}(n, \mathbb{Q})$-modules consisting of sums of Steinberg modules for all subspaces of \mathbb{Q}^{n}.

1. Introduction

Serre's conjecture [23] (now a theorem of Khare, Wintenberger, and Kisin [18, 19, 20]) gives a connection between odd irreducible Galois representations $\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}\left(2, \overline{\mathbb{F}}_{p}\right)$ and modular forms that are simultaneous eigenvectors of all the Hecke operators. Via the Eichler-Shimura isomorphism [24], it can be interpreted as giving a connection between such Galois representations and elements of a cohomology group $H^{1}\left(\Gamma_{0}(N), V\right)$ for an appropriate coefficient module V. This interpretation of Serre's conjecture was generalized by [10] to a conjecture relating odd Galois representations $\rho: G_{\mathbb{Q}} \rightarrow \operatorname{GL}\left(n, \overline{\mathbb{F}}_{p}\right)$ to eigenclasses of the Hecke operators in cohomology groups $H^{*}\left(\Gamma_{0}(n, N), V\right)$, where $\Gamma_{0}(n, N)$ is the congruence subgroup of $\operatorname{SL}(n, \mathbb{Z})$ that generalizes $\Gamma_{0}(N) \subset \operatorname{SL}(2, \mathbb{Z})$. Refinements of the conjecture [8,16] make more precise predictions concerning the proper coefficient modules.

Some proven cases of the conjectured connection between Galois representations and cohomology eigenclasses are known. In particular, the conjecture is known for twodimensional Galois representations. In [12], the conjecture is proven for certain irreducible symmetric square representations of odd irreducible two-dimensional representations.

Our long-term goal is to prove the conjecture for any odd reducible Galois representation under the assumption that the conjecture holds for each constituent. In [3], odd Galois representations that are sums of characters are shown to correspond to cohomology eigenclasses. This work was extended in [5] to show that any sum of characters with a Galois representation satisfying the conjecture such that the resulting representation

[^0]is odd will satisfy the conjecture. In [6], it is shown that if ρ_{1} and ρ_{2} are two Galois representations, each attached to a cohomology eigenclass with trivial coefficient module, then a twisted sum of the two representations will also be attached to a cohomology Hecke eigenclass with trivial coefficients (although not in the cohomology of a group of the form $\left.\Gamma_{0}(n, N)\right)$.

In this paper, we prove that Galois representations of the form $\rho_{1} \oplus \rho_{2}$ of squarefree level N with ρ_{1} and ρ_{2} two-dimensional irreducible and odd are attached to Hecke eigenclasses in the cohomology of $\Gamma_{0}(4, N)$. Together with our previous results cited above, we have now proven the conjecture of [8] for all odd reducible four-dimensional Galois representations, as long as the constituents have squarefree pairwise relatively prime conductors, and satisfy the conjecture themselves.

The two main new tools that we use in the proof are an exact sequence of $\mathrm{GL}(n, K)$ modules for any field K that involves the Steinberg modules for GL (W) for all subspaces W of K^{n} (Section 4), and Theorem 11.5 on the reducibility of Galois representations attached to the cohomology of arithmetic subgroups of parabolic subgroups of $\mathrm{GL}(n, \mathbb{Q})$.

The exact sequence of Section 4 generalizes the exact sequence used in [5, 7], which only works for $n=3$, to arbitrary n. It is a resolution of \mathbb{Z} by non-free modules which are induced from various parabolic subgroups. Using a certain Hecke equivariant spectral sequence arising from this exact sequence, we are able to construct a system of Hecke eigenvalues that have $\rho_{1} \oplus \rho_{2}$ attached.

Our other main tool, Theorem 11.5 proves that any Hecke eigenclass attached to the cohomology of a maximal parabolic subgroup of type $\left(n_{1}, n_{2}\right)$ has an attached Galois representation that is a sum of (possibly reducible) Galois representations $\rho_{1} \oplus \rho_{2}$, with $\rho_{i}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}\left(n_{i}, \overline{\mathbb{F}}_{p}\right)$ for $i=1,2$.

On the more technical side, this paper includes extensions from $n=3$ to general n of the study we made in $[5,7]$ of orbits of subspaces of \mathbb{Q}^{n} under certain congruence subgroups of $\mathrm{GL}(n, \mathbb{Z})$. We also study the action of a Levi component on the groups $H_{*}(\Gamma \cap U, M)$ appearing in the Hochschild-Serre spectral sequence for

$$
1 \rightarrow \Gamma \cap U \rightarrow \Gamma \cap P \rightarrow \Gamma \cap L \rightarrow 1
$$

where U is the unipotent radical of a maximal parabolic subgroup $P=L U$ of $\mathrm{GL}(n, \mathbb{Q})$. We show in Theorem 7.11 that under certain hypotheses, the Hecke algebra for Γ_{P} acts in an equivariant fashion on the spectral sequence. This is surprisingly hard to do and we don't even know if this continues to be the case if P is not maximal. A third generalization of our earlier work concerns the detailed action of the matrices defining the Hecke operators on the homology. The last new technical point regards the interplay of the Hecke operators and the Künneth formula in Section 10.

We expect to be able to apply these methods to higher dimensional Galois representations; at present, we are not able to because we have not yet been able to prove that a certain Hochschild-Serre spectral sequence, used to construct the systems of Hecke eigenvalues that we need, degenerates when $n>4$.

We know that a system of Hecke eigenvalues appears in $H^{k}\left(\Gamma_{0}(n, N), V\right)$ if and only if it appears in $H_{k}\left(\Gamma_{0}(n, N), V\right)$. We have discussed mostly cohomology in the introduction to conform with common usage. Our theorems and proofs below will all be stated for homology.

2. Galois representations, Hecke Operators, cohomology and homology

Let $p>2$ be a prime number, and let $\mathbb{F}=\overline{\mathbb{F}}_{p}$. Throughout the paper, we use Borel-Serre duality for subgroups of $\operatorname{GL}(n, \mathbb{Z})[13$, Section 11.4], and the fact that the Borel-Serre duality isomorphism is Hecke equivariant [9, Corollary 3]; when we do this we will require $p>n+1$, so that no torsion element of $\operatorname{GL}(n, \mathbb{Z})$ has order divisible by p. By a Galois representation we mean a continuous homomorphism $\rho: G_{\mathbb{Q}} \rightarrow \operatorname{GL}(n, \mathbb{F})$ for some positive integer n. For each prime ℓ, we fix a choice of Frobenius element $\operatorname{Fr}_{\ell} \in G_{\mathbb{Q}}$; we use the arithmetic Frobenius, so that if $\omega: G_{\mathbb{Q}} \rightarrow \mathbb{F}$ is the cyclotomic character, $\omega\left(\mathrm{Fr}_{\ell}\right)=\ell$. If ρ is unramified at ℓ, then $\rho\left(\mathrm{Fr}_{\ell}\right)$ is defined up to similarity. Hence, for ρ unramified at ℓ, the characteristic polynomial $\operatorname{det}\left(I-\rho\left(\operatorname{Fr}_{\ell}\right) X\right)$ of $\rho\left(\operatorname{Fr}_{\ell}\right)$ is well defined.

Definition 2.1. Let $n>1$ and $N \in \mathbb{N}$, and let p be a prime in \mathbb{Z}.
(1) $S_{0}^{ \pm}(n, N)$ consists of the set of all $n \times n$ matrices with integer entries and nonzero determinant prime to $p N$ whose first row is congruent to $(*, 0, \ldots, 0)$ modulo N.
(2) $S_{0}(n, N)$ consists of elements of $S_{0}^{ \pm}(n, N)$ with positive determinant.
(3) $\Gamma_{0}^{ \pm}(n, N)=S_{0}^{ \pm}(n, N) \cap \mathrm{GL}(n, \mathbb{Z})$.
(4) $\Gamma_{0}(n, N)=S_{0}(n, N) \cap \operatorname{SL}(n, \mathbb{Z})$.

For a given prime p and positive integer N prime to $p,\left(\Gamma_{0}(n, N), S_{0}(n, N)\right)$ is a Hecke pair (see [1]), and we denote the \mathbb{F}-algebra of its double cosets by $\mathcal{H}_{n, N}$. We note that $\mathcal{H}_{n, N}$ is commutative, and is generated by the double cosets

$$
\Gamma_{0}(n, N) s(\ell, n, k) \Gamma_{0}(n, N)
$$

where $s(\ell, n, k)=\operatorname{diag}(1, \ldots, 1, \ell, \ldots, \ell)$ is a diagonal matrix with k copies of ℓ on the diagonal, ℓ runs over all primes not dividing $p N$, and $0 \leq k \leq n$. The algebra $\mathcal{H}_{n, N}$ acts on the homology or cohomology of $\Gamma_{0}(n, N)$ with coefficients in any $\mathbb{F}\left[S_{0}(n, N)\right]$-module
M. When the double coset of $s(\ell, n, k)$ acts on homology or cohomology, we will denote it by $T_{n}(\ell, k)$.

Definition 2.2. Let V be any $\mathcal{H}_{n, N}$-module, and suppose that $v \in V$ is a simultaneous eigenvector of all the $T_{n}(\ell, k)$ for $\ell \nmid p N$, with eigenvalues $a(\ell, k) \in \mathbb{F}$. Suppose that $\rho: G_{\mathbb{Q}} \rightarrow \operatorname{GL}(n, \mathbb{F})$ is a Galois representation unramified outside $p N$. We say that ρ is attached to v if, for all $\ell \nmid p N$,

$$
\operatorname{det}\left(I-\rho\left(\operatorname{Fr}_{\ell}\right) X\right)=\sum_{k=0}^{n}(-1)^{k} \ell^{k(k-1) / 2} a(\ell, k) X^{k} .
$$

If ρ is attached to $v \in V$, we will also say that ρ fits V.

3. Conjectures relating Galois representations and arithmetic homology/cohomology

Definition 3.1 ([7]). Let S be a subsemigroup of the matrices in $\mathrm{GL}(n, \mathbb{Q})$ with integer entries whose determinants are prime to $p N$. A (p, N)-admissible S-module M is an $\mathbb{F}[S]$-module of the form $M^{\prime} \otimes F_{\epsilon}$, where M^{\prime} is an $\mathbb{F}[S]$-module on which $S \cap \mathrm{GL}(n, \mathbb{Q})^{+}$ acts via its reduction modulo p, and ϵ is a character $\epsilon: S \rightarrow \mathbb{F}^{\times}$which factors through the reduction of S modulo N. Here \mathbb{F}_{ϵ} is the vector space \mathbb{F}, with S acting as multiplication via ϵ. An admissible module is one which is (p, N)-admissible for some choice of p and N.

We can construct (p, N)-admissible modules by starting with $\mathrm{GL}\left(n, \mathbb{F}_{p}\right)$-modules, and letting S act via reduction modulo p. We have the following parametrization of irreducible $\mathrm{GL}\left(n, \mathbb{F}_{p}\right)$-modules.

Theorem 3.2 ([15]). Call an n-tuple of $\left(a_{1}, \ldots, a_{n}\right)$ of integers p-restricted if $0 \leq a_{n}<$ $p-1$ and, for each $i<n, 0 \leq a_{i}-a_{i+1} \leq p-1$. Then there is a bijection between p-restricted n-tuples of integers and irreducible $\mathbb{F}\left[\mathrm{GL}\left(n, \mathbb{F}_{p}\right)\right]$-modules, with the n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ corresponding to the unique simple submodule of the dual Weyl module with highest weight $\left(a_{1}, \ldots, a_{n}\right)$.

Definition 3.3. Denote by $F\left(a_{1}, \ldots, a_{n}\right)$ the irreducible $\mathbb{F}\left[G L\left(n, \mathbb{F}_{p}\right)\right]$-module corresponding to the p-restricted n-tuple $\left(a_{1}, \ldots, a_{n}\right)$.

As described above, $F\left(a_{1}, \ldots, a_{n}\right)$ becomes an S-module on which S acts via reduction modulo p. We will relax the condition on the value of a_{n}, allowing it to be an arbitrary integer; this has the effect that a given module corresponds to infinitely many n-tuples, all congruent to some p-restricted n-tuple modulo $p-1$, and it allows flexibility in specifying modules. Given a character $\epsilon: S \rightarrow \mathbb{F}^{\times}$that factors through the reduction of S modulo N, we see that $F\left(a_{1}, \ldots, a_{n}\right)_{\epsilon}=F\left(a_{1}, \ldots, a_{n}\right) \otimes \mathbb{F}_{\epsilon}$ is a (p, N)-admissible module.

If $S=S_{0}(n, N)$ and $\epsilon:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{F}^{\times}$is a character, we will also denote by $\epsilon: S \rightarrow \mathbb{F}^{\times}$the character sending $s \in S$ to the image under ϵ of the $\bmod N$ reduction of the $(1,1)$ entry of s. In this case, we call ϵ a nebentype character.

In order to state the main conjecture of [8], we recall the following definition.
Definition 3.4. For $n>1$, a Galois representation $\rho: G_{\mathbb{Q}} \rightarrow \operatorname{GL}(n, \mathbb{F})$ is odd if the image of complex conjugation is similar to a matrix with alternating 1 's and -1 's on the diagonal. A Galois representation $\rho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}(1, \mathbb{F})=\mathbb{F}^{\times}$is odd if the image of complex conjugation is -1 , and is called even otherwise.

Conjecture 3.5 ([8, Conjecture 3.1]). For any odd Galois representation $\rho: G_{\mathbb{Q}} \rightarrow$ $\mathrm{GL}(n, \mathbb{F})$, we may find an integer N (called the level), an irreducible $\mathrm{GL}\left(n, \mathbb{F}_{p}\right)$-module M (called the weight), and a Dirichlet character ϵ (called the nebentype), such that ρ fits $H^{k}\left(\Gamma_{0}(N), M_{\epsilon}\right)$.

In fact, [8, Conjecture 3.1] predicts the level, weight and nebentype from the structure of ρ. We do not give these definitions in detail in this paper; see [8] for detailed descriptions.

In this paper, we will generalize techniques developed in $[3,5,7]$ to prove the following theorem.

Theorem 3.6. Let $p>5$. For $i=1$, 2 , let $\rho_{i}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}(2, \mathbb{F})$ be odd, irreducible Galois representations with squarefree relatively prime levels. Then $\rho_{1} \oplus \rho_{2}$ fits at least one of $H_{6}\left(\Gamma_{0}(n, N), M_{\epsilon}\right)$ or $H_{2}\left(\Gamma_{0}(n, N), M_{\epsilon}\right)$, with N, M, and ϵ as predicted by [8].

4. A Steinberg module exact sequence

Throughout this section, fix a field K. In this section, we derive a resolution of \mathbb{Z} by $\mathrm{GL}(n, K)$-modules that generalizes the resolution used in [5], which only works for $\mathrm{GL}(3, K)$.

For a vector space W over K, denote by $\mathbb{P}(W)$ the projective space $(W-\{0\}) / K^{\times}$of nonzero vectors in W modulo scalar multiplication. For any collection $w_{1}, \ldots, w_{k} \in \mathbb{P}(W)$, we will denote by $\operatorname{span}\left(w_{1}, \ldots, w_{k}\right)$ the subspace of W spanned by lifts of the w_{i} to W (we see easily that the span is independent of the choice of lifts).

We recall the definition of the sharbly complex.
Definition 4.1 ([2]). Let W be a k-dimensional vector space over a field K. For $i \geq 0$, define the i-sharblies $\operatorname{Sh}_{i}(W)$ to be the free \mathbb{Z}-module generated by the $(k+i)$-tuples $\left(w_{1}, \ldots, w_{k+i}\right)$ for $w_{i} \in \mathbb{P}(W)$, modulo the \mathbb{Z}-span of the following elements:
(1) $\left(w_{\sigma(1)}, \ldots, w_{\sigma(k+i)}\right)-(-1)^{\sigma}\left(w_{1}, \ldots, w_{k+i}\right)$ for all permutations $\sigma \in S_{k+i}$,
(2) $\left(w_{1}, \ldots, w_{k+i}\right)$ if $\left\{w_{1}, \ldots, w_{k+i}\right\}$ does not span W.

We denote a basis element of the i-sharblies by the symbol $\left[w_{1}, \ldots w_{k+i}\right]$ where each $w_{j} \in \mathbb{P}(W)$, with (1) implying that this symbol is antisymmetric in the entries, and (2) implying that it is 0 if the entries do not span W. By considering $\operatorname{GL}(W)$ to act on W by right multiplication, there is a natural right action of $\mathrm{GL}(W)$ on $\mathrm{Sh}_{i}(W)$. The boundary $\operatorname{map} d_{i}: \mathrm{Sh}_{i}(W) \rightarrow \mathrm{Sh}_{i-1}(W)$ is given by

$$
d_{i}\left(\left[w_{1}, \ldots, w_{k+i}\right]\right)=\sum_{j=1}^{k+i}(-1)^{j}\left[w_{1}, \ldots, \hat{w}_{j}, \ldots, w_{k+i}\right]
$$

The sharbly complex is the complex of right GL(W)-modules

$$
\cdots \rightarrow \operatorname{Sh}_{i}(W) \xrightarrow{d_{i}} \operatorname{Sh}_{i-1}(W) \rightarrow \cdots \rightarrow \operatorname{Sh}_{1}(W) \xrightarrow{d_{1}} \operatorname{Sh}_{0}(W)
$$

By [2] the Steinberg module $\operatorname{St}(W)$ is isomorphic to the cokernel of the map d_{1} : $\mathrm{Sh}_{1}(W) \rightarrow \mathrm{Sh}_{0}(W)$, and therefore we get a resolution of the Steinberg module:

$$
\cdots \rightarrow \operatorname{Sh}_{j}(W) \rightarrow \operatorname{Sh}_{j-1}(W) \rightarrow \cdots \rightarrow \operatorname{Sh}_{1}(W) \rightarrow \operatorname{Sh}_{0}(W) \rightarrow \operatorname{St}(W) \rightarrow 0
$$

We will denote the image of a 0 -sharbly $\left[w_{1}, \ldots, w_{k}\right]$ in $\operatorname{St}(W)$ by $\llbracket w_{1}, \ldots, w_{k} \rrbracket$. We note that if W is 0 -dimensional, the Steinberg module and the 0 -sharblies are isomorphic to \mathbb{Z} (with trivial $\mathrm{GL}(W)$-action), generated by the empty symbols 【】 and []. If W is 1-dimensional, we also have that the Steinberg module and the 1 -sharblies are isomorphic to \mathbb{Z} (with trivial GL(W)-action), generated by the symbols $\llbracket w \rrbracket$ and $[w]$, where w is the unique element of $\mathbb{P}(W)$.

Theorem 4.2. Let V be an n-dimensional vector space over K with $n>0$. Then there is an exact sequence of $\mathrm{GL}(V)$-modules

$$
0 \rightarrow \bigoplus_{W^{n}} \operatorname{St}\left(W^{n}\right) \xrightarrow{\delta_{n}} \bigoplus_{W^{n-1}} \operatorname{St}\left(W^{n-1}\right) \xrightarrow{\delta_{n-1}} \cdots \xrightarrow{\delta_{2}} \bigoplus_{W^{1}} \operatorname{St}\left(W^{1}\right) \xrightarrow{\delta_{1}} \bigoplus_{W^{0}} \operatorname{St}\left(W^{0}\right) \rightarrow 0
$$

where each W^{i} runs through all subspaces of V of dimension i, and the map

$$
\delta_{k}: \bigoplus_{W^{k}} \operatorname{St}\left(W^{k}\right) \rightarrow \bigoplus_{W_{k-1}} \operatorname{St}\left(W^{k-1}\right)
$$

is defined by

$$
\delta_{k}\left(\llbracket w_{1}, \ldots, w_{k} \rrbracket\right)=\sum_{j=1}^{k}(-1)^{j} \llbracket w_{1}, \ldots, \hat{w}_{j}, \ldots, w_{k} \rrbracket
$$

for $\llbracket w_{1}, \ldots, w_{k} \rrbracket \in \operatorname{St}\left(W^{k}\right)$, with $W^{k}=\operatorname{span}\left(w_{1}, \ldots, w_{k}\right)$ and

$$
\llbracket w_{1}, \ldots, \hat{w}_{j}, \ldots, w_{k} \rrbracket \in \operatorname{St}\left(W_{j}^{k-1}\right)
$$

where $W_{j}^{k-1}=\operatorname{span}\left(w_{1}, \ldots, \hat{w}_{j}, \ldots, w_{k}\right)$.

Proof. For $\gamma \in \mathrm{GL}(V)$, and a generator $\llbracket w_{1}, \ldots, w_{k} \rrbracket \in \operatorname{St}\left(W^{k}\right)$, we define

$$
\llbracket w_{1}, \ldots, w_{k} \rrbracket \gamma=\llbracket w_{1} \gamma, \ldots, w_{k} \gamma \rrbracket \in \operatorname{St}\left(W^{k} \gamma\right) .
$$

With this action, we see easily that

$$
\bigoplus_{W^{k}} \operatorname{St}\left(W^{k}\right)
$$

is a $\mathrm{GL}(V)$-module and that δ_{k} is an equivariant map of $\mathrm{GL}(V)$-modules.
We now check that each δ_{k} is a well defined map.
To begin, let W be a k-dimensional subspace of V. We may write the Steinberg module of W as $A(W) /(B(W)+C(W))$, where $A(W)$ is the free \mathbb{Z}-module generated by antisymmetric symbols $\left(w_{1}, \ldots, w_{k}\right)$ with $w_{i} \in \mathbb{P}(W), B(W)$ is generated by all such symbols where w_{1}, \ldots, w_{k} are contained in a proper subspace of W^{k}, and $C(W)$ is generated by elements of the form

$$
\sum_{j=1}^{k}(-1)^{j}\left(w_{1}, \ldots, \hat{w}_{j}, \ldots, w_{k}\right) .
$$

Define $\phi: A(W) \rightarrow \oplus \operatorname{St}\left(W^{k-1}\right)$ by

$$
\left(w_{1}, \ldots, w_{k}\right) \mapsto \sum_{j=1}^{k}(-1)^{j} \llbracket w_{1}, \ldots, \hat{w}_{j}, \ldots, w_{k} \rrbracket .
$$

Note that in any case where the symbol $\llbracket w_{1}, \ldots, \hat{w}_{j}, \ldots, w_{k} \rrbracket$ is not in a unique Steinberg module because the dimension of the span of $w_{1}, \ldots, \hat{w}_{j}, \ldots, w_{k}$ is less than $k-1=$ $\operatorname{dim} W^{k-1}$, the symbol vanishes, regardless of which module it is considered to lie in. Hence, since $A(W)$ is free over \mathbb{Z}, ϕ is well-defined, and if ϕ maps both $B(W)$ and $C(W)$ to 0 , then the map δ_{k} that it induces on $A(W) /(B(W)+C(W))$ will be well defined.

Now ϕ maps $C(W)$ to 0 by the standard argument that the boundary of the boundary is 0 . Further, if $\left(w_{1}, \ldots, w_{k}\right) \in B(W)$, then letting W^{k-1} be a $(k-1)$-dimensional subspace of W containing w_{1}, \ldots, w_{k}, we find that

$$
\sum_{j=1}^{k}(-1)^{j}\left(w_{1}, \ldots, \hat{w}_{j} \ldots, w_{k}\right) \in C\left(W^{k-1}\right)
$$

Now $C\left(W^{k-1}\right)$ maps to 0 in $\operatorname{St}\left(W^{k-1}\right)$, so $\phi\left(w_{1}, \ldots, w_{k}\right)=0$ and $\phi(B(W))=0$. Thus, we see that δ_{k} is well defined.

It is clear that the composition $\delta_{k-1} \circ \delta_{k}$ is equal to 0 for $k>0$. In addition, δ_{1} is clearly surjective, since there is only one zero-dimensional subspace of V and $\delta_{1}(w)=-\llbracket \rrbracket$ for any $w \in V$.

Now we wish to prove that any element of $\operatorname{ker} \delta_{k}$ is contained in the image of δ_{k+1}.

Suppose that for some index set \mathcal{A}, and some integers c_{a} for $a \in \mathcal{A}$, we have

$$
s=\sum_{a \in \mathcal{A}} c_{a} \llbracket w_{1}^{a}, \ldots, w_{k}^{a} \rrbracket
$$

is in the kernel of δ_{k} for $0<k<n$. We will show that it is in the image of δ_{k+1}.
Choose an arbitrary $x \in \mathbb{P}(V)$. Then

$$
\sum_{a} c_{a} \llbracket x, w_{1}^{a}, \ldots, w_{k}^{a} \rrbracket \in \bigoplus_{W^{k+1}} \operatorname{St}\left(W^{k+1}\right)
$$

(note that some of the terms may be 0 , if $x \in \operatorname{span}\left(w_{1}^{a}, \ldots, w_{k}^{a}\right)$). In any case, we have

$$
\begin{aligned}
\delta_{k+1}\left(\sum_{a} c_{a} \llbracket x, w_{1}^{a}, \ldots, w_{k}^{a} \rrbracket\right)= & -\sum_{a} c_{a} \llbracket w_{1}^{a}, \ldots, w_{k}^{a} \rrbracket \\
& -\sum_{a} \sum_{j=1}^{k}(-1)^{j} c_{a} \llbracket x, w_{1}^{a}, \ldots, \hat{w}_{j}^{a}, \ldots, w_{k}^{a} \rrbracket .
\end{aligned}
$$

Adding this to s, we obtain a new element $s^{\prime} \in \operatorname{ker} \delta_{k}$ that differs from s by an element of the image of δ_{k+1}. It thus suffices to prove that s^{\prime} is in the image of δ_{k+1}. We note that each symbol comprising s^{\prime} has as its first component the chosen x. Hence, (changing the w_{i}^{a}, the c_{a}, and indeed the index set \mathcal{A}), we may write

$$
s^{\prime}=\sum_{a \in \mathcal{A}} c_{a} \llbracket x, w_{2}^{a}, \ldots, w_{k}^{a} \rrbracket .
$$

By eliminating terms where $\left\{x, w_{2}^{a}, \ldots, w_{k}^{a}\right\}$ does not span a k-dimensional space, we may also assume that for each a, we have $x \notin \operatorname{span}\left(w_{2}^{a}, \ldots, w_{k}^{a}\right)$.

Now,

$$
0=\delta_{k}\left(s^{\prime}\right)=-\sum_{a} c_{a} \llbracket w_{2}^{a}, \ldots, w_{k}^{a} \rrbracket-\sum_{j=1}^{k} \sum_{a}(-1)^{j} c_{a} \llbracket x, w_{2}^{a}, \ldots, \hat{w}_{j}^{a}, \ldots, w_{k}^{a} \rrbracket .
$$

Since, for each a, we have $x \notin \operatorname{span}\left(w_{2}^{a}, \ldots, w_{k}^{a}\right)$, we see that no terms of the double sum are in the same component of

$$
\bigoplus_{W^{k-1}} \operatorname{St}\left(W^{k-1}\right)
$$

as any term in the first sum. Hence, we must have

$$
\sum_{a} c_{a} \llbracket w_{2}^{a}, \ldots, w_{k}^{a} \rrbracket=0
$$

For each $(k-1)$-dimensional subspace W of V, set $\mathcal{A}_{W}=\left\{a: \operatorname{span}\left(w_{2}^{a}, \ldots, w_{k}^{a}\right)=W\right\}$. Then each a is in precisely one \mathcal{A}_{W}. We see that for each W

$$
\sum_{a \in \mathcal{A}_{W}} c_{a} \llbracket w_{2}^{a}, \ldots, w_{k}^{a} \rrbracket=0
$$

For any W with \mathcal{A}_{W} nonempty, since the Steinberg module of W is the cokernel of $\mathrm{Sh}_{1}(W) \xrightarrow{d_{1}} \mathrm{Sh}_{0}(W)$, we see that there is an index set \mathcal{B}, integers c_{b} and elements $\left[y_{1}^{b}, \ldots, y_{k}^{b}\right] \in \mathrm{Sh}_{1}(W)$ for each $b \in \mathcal{B}$ such that

$$
\sum_{a \in \mathcal{A}_{W}} c_{a}\left[w_{2}^{a}, \ldots, w_{k}^{a}\right]=d_{1}\left(\sum_{b \in \mathcal{B}} c_{b}\left[y_{1}^{b}, \ldots, y_{k}^{b}\right]\right)=\sum_{b \in \mathcal{B}} \sum_{j=1}^{k}(-1)^{j} c_{b}\left[y_{1}^{b}, \ldots, \hat{y}_{j}^{b}, \ldots, y_{k}^{b}\right] .
$$

Let W_{x} be the span of W and a lift of x. Then in $\operatorname{Sh}_{0}\left(W_{x}\right)$ we have

$$
\sum_{a \in \mathcal{A}_{W}} c_{a}\left[x, w_{2}^{a}, \ldots, w_{k}^{a}\right]=\sum_{b \in \mathcal{B}} \sum_{j=1}^{k}(-1)^{j} c_{b}\left[x, y_{1}^{b}, \ldots, \hat{y}_{j}^{b}, \ldots, y_{k}^{b}\right] .
$$

Hence, in $\operatorname{St}\left(W_{x}\right)$,

$$
\sum_{a \in \mathcal{A}_{W}} c_{a} \llbracket x, w_{2}^{a}, \ldots, w_{k}^{a} \rrbracket=\sum_{b \in \mathcal{B}} \sum_{j=1}^{k}(-1)^{j} c_{b} \llbracket x, y_{1}^{b}, \ldots, \hat{y}_{j}^{b}, \ldots, y_{k}^{b} \rrbracket .
$$

Because $y_{1}^{b}, \ldots, y_{k}^{b}$ span a $(k-1)$-dimensional subspace, this equals

$$
-\sum_{b}\left(c_{b} \llbracket y_{1}^{b}, \ldots, y_{k}^{b} \rrbracket-\sum_{j=1}^{k}(-1)^{j} c_{b} \llbracket x, y_{1}^{b}, \ldots, \hat{y}_{j}^{b}, \ldots, y_{k}^{b} \rrbracket\right),
$$

which is equal to

$$
-\delta_{k+1}\left(\sum_{b} c_{b} \llbracket x, y_{1}, \ldots, y_{k} \rrbracket\right),
$$

so that

$$
\sum_{a \in \mathcal{A}_{W}} c_{a} \llbracket x, w_{2}^{a}, \ldots, w_{k}^{a} \rrbracket=\delta_{k+1}\left(-\sum_{b} c_{b} \llbracket x, y_{1}, \ldots, y_{k} \rrbracket\right) .
$$

Since this is true for all W, we have that $s^{\prime}=\sum_{a} c_{a} \llbracket x, w_{2}^{a}, \ldots, w_{k}^{a} \rrbracket$ is in the image of δ_{k+1}.

The proof that δ_{n} is injective is similar, but uses $d_{1}: \operatorname{Sh}_{1}(V) \rightarrow \operatorname{Sh}_{0}(V)$ in place of the nonexistent δ_{n+1}, and is left to the reader (see [4, Theorem 2.1] for more details).

5. $\Gamma_{0}(n, N)$-orbits of subspaces of \mathbb{Q}^{n}

By considering the elements of \mathbb{Q}^{n} as row vectors, right multiplication by elements of $\mathrm{GL}(n, \mathbb{Q})$ yields a right action of $\mathrm{GL}(n, \mathbb{Q})$ on \mathbb{Q}^{n}. This action restricts to an action of $\Gamma_{0}(n, N)$ on \mathbb{Q}^{n}. In a natural way, we may also consider $\mathrm{GL}(n, \mathbb{Q})$ (and hence also $\Gamma_{0}(n, N)$) as acting on the set of k-dimensional subspaces of \mathbb{Q}^{n}, for $0 \leq k \leq n$. We wish to find explicit representatives of the $\Gamma_{0}(n, N)$-orbits of k-dimensional subspaces. Note that for $k=0$ and $k=n$, there is only one k-dimensional subspace, and hence only one orbit, with a unique orbit representative.

Theorem 5.1. Let $0<k<n$ and assume that N is squarefree. Then the $\Gamma_{0}(n, N)$-orbits of k-dimensional subspaces of \mathbb{Q}^{n} are in one-to-one correspondence with the set of positive divisors of N, where the orbit corresponding to the divisor d contains the k-dimensional subspace spanned by

$$
e_{1}+d e_{k+1}, e_{2}, e_{3}, e_{4}, \ldots, e_{k}
$$

where e_{i} denotes the standard basis element of \mathbb{Q}^{n} with a 1 in the ith column, and 0 's elsewhere.

Multiplication by elements of $S_{0}^{ \pm}(n, N)$ preserves the $\Gamma_{0}(n, N)$-orbits.
Proof. Let W be a k-dimensional subspace, and let M be a $k \times n$ matrix with integer entries whose rows span W. For $\gamma \in \Gamma_{0}(n, N), M \gamma$ has row space $W \gamma$. Left multiplication by an element of $\operatorname{GL}(k, \mathbb{Q})$ does not change the row space of a matrix, so we wish to find a canonical element of the double coset

$$
\mathrm{GL}(k, \mathbb{Q}) M \Gamma_{0}(n, N) .
$$

Integer column operations on the rightmost $n-1$ columns of M can be represented by right multiplication by an element of $\Gamma_{0}(n, N)$; similarly, arbitrary row operations correspond to left multiplication by an element of $\mathrm{GL}(k, \mathbb{Q})$. Using these operations we find that the row space of M is $\Gamma_{0}(n, N)$-equivalent to the row space of

$$
M^{\prime}=\left(\begin{array}{cccccc}
a & 0_{k-1}^{t} & b & 0 & \cdots & 0 \\
0_{k-1} & I_{k-1} & 0_{k-1} & 0_{k-1} & \cdots & 0_{k-1}
\end{array}\right)
$$

where $a, b \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)=1$. Here, 0_{k-1} denotes the column vector of all zeros and length $k-1$, and 0_{k-1}^{t} denotes its transpose.

Since $\operatorname{gcd}(a, b)=1$, we may find r and s so that $a r+b s=1$. Then for all $\ell \in \mathbb{Z}$, $a(r+b \ell)+b(s-a \ell)=1$ and for all $d \in \mathbb{Z}$,

$$
(a+d(s-a \ell))(r+b \ell)+(b-d(r+b \ell))(s-a \ell)=1 .
$$

Hence, the matrix

$$
S=\left(\begin{array}{cc}
r+\ell b & -(b-d(r+\ell b)) \\
s-a \ell & a+d(s-a \ell)
\end{array}\right)
$$

has determinant 1. In order for it to be in $\Gamma_{0}(2, N)$, we need $b-d(r+\ell b)=m N$ for some $m \in \mathbb{Z}$. To guarantee this, we choose $d=\operatorname{gcd}(b, N)$. Since N is squarefree, we see that $\operatorname{gcd}(b, N / d)=1$, so that there are integers ℓ, m with $b \ell+m N / d=b / d-r$. With this choice of ℓ, we see that $S \in \Gamma_{0}(2, N)$.

Form the matrix T by replacing the $(1,1),(1, k+1),(k+1,1)$ and $(k+1, k+1)$ entries of I_{n} by the $(1,1),(1,2),(2,1)$, and $(2,2)$ entries of S. Then T is clearly in $\Gamma_{0}(n, N)$. Thus, the row space of M is $\Gamma_{0}(n, N)$-equivalent to the row space of

$$
M^{\prime} T=\left(\begin{array}{cccccc}
1 & 0_{k-1}^{t} & d & 0 & \cdots & 0 \\
0_{k-1} & I_{k-1} & 0_{k-1} & 0_{k-1} & \cdots & 0_{k-1}
\end{array}\right)
$$

Hence, every $\Gamma_{0}(n, N)$-orbit of a k-dimensional subspace of \mathbb{Q}^{n} contains a subspace of the proper form.

Suppose $S \in S_{0}^{ \pm}(n, N)$ takes a subspace in the $\Gamma_{0}(n, N)$-orbit corresponding to $d \mid N$, to a subspace in the orbit corresponding to $d^{\prime} \mid N$. Then, after multiplying S by an appropriate element of $\Gamma_{0}(n, N)$ so that it takes the representative subspace of the orbit corresponding to d to the representative corresponding to d^{\prime}, for some $x \in \mathbb{Z}$, we must have

$$
\left(1,0_{k-1}^{t}, d, 0_{n-k-1}^{t}\right) S=\left(x, *, \ldots, *, x d^{\prime}, 0_{n-k-1}^{t}\right)
$$

If we now denote the $(1,1),(1, k+1),(k+1,1)$ and $(k+1, k+1)$ entries of S by $a, b N, r$, and s, respectively, and note that $\operatorname{gcd}(a, N)=1$, we see that we must have $a+r d=x$ and $b N+s d=d^{\prime} x$. Hence, $b N+s d=d^{\prime} a+r d d^{\prime}$, and we see that $d \mid d^{\prime} a$, so that $d \mid d^{\prime}$. Now using that $\operatorname{det}(S) \cdot S^{-1}=S^{\prime} \in S_{0}^{ \pm}(n, N)$, replacing S by S^{\prime}, and reversing the roles of d and d^{\prime}, we must similarly have $d^{\prime} \mid d$. Hence, $d=d^{\prime}$.

Now, let W_{0}^{k} be the row space of the $k \times n$ matrix

$$
M_{0}=\left(\begin{array}{l|l}
I_{k} & 0
\end{array}\right) .
$$

Let g_{d} be equal to the $n \times n$ identity matrix I_{n}, with the $(1, k+1)$ entry replaced by d. Let P_{0}^{k} be the stabilizer (in $\operatorname{GL}(n, \mathbb{Q})$, acting on the right) of W_{0}^{k}. Define $P_{d}^{k}=g_{d}^{-1} P_{0} g_{d}$; it is the stabilizer of the row space W_{d}^{k} of $M_{0} g_{d}$, or in other words the stabilizer of the canonical representative of the $\Gamma_{0}(n, N)$-orbit of k-dimensional subspaces of \mathbb{Q}^{n} corresponding to the divisor d of N. Typically, when k is understood, we will omit it, writing P_{0}, P_{d}, or W_{d} rather than P_{0}^{k}, P_{d}^{k}, or W_{d}^{k}. We will call a subgroup P_{d} a representative maximal parabolic subgroup, and denote its unipotent radical by U_{d} and its Levi quotient by $L_{d}=P_{d} / U_{d}$. Note that $U_{d}=g_{d}^{-1} U_{0} g_{d}$, where U_{0} is the unipotent radical of P_{0}.

The subgroup P_{0} consists of block matrices

$$
\left(\begin{array}{ll}
A & 0 \\
B & C
\end{array}\right)
$$

in which A is an invertible $k \times k$ matrix, C is an invertible $(n-k) \times(n-k)$ matrix, B is an arbitrary $(n-k) \times k$ matrix, and the block of zeroes is $k \times(n-k)$. For a block matrix $g \in P_{0}$ as above, we define $\psi_{0}^{1}(g)=A$ and $\psi_{0}^{2}(g)=C$. One sees easily that $\psi_{0}^{1}: P_{0} \rightarrow \mathrm{GL}(k, \mathbb{Q})$ and $\psi_{0}^{2}: P_{0} \rightarrow \mathrm{GL}(n-k, \mathbb{Q})$ are group homomorphisms.

For $s \in P_{d}$, define $\psi_{d}^{i}(s)=\psi_{0}^{i}\left(g_{d} s g_{d}^{-1}\right)$.
We have the following straightforward generalization of [3, Theorem 7].
Theorem 5.2. Let d be a positive divisor of N and assume that $(d, N / d)=1$.
(1) If $s \in P_{d} \cap S_{0}(n, N)^{ \pm}$, then $\psi_{d}^{1}(s)_{11} \equiv s_{11}(\bmod d)$ and $\psi_{d}^{2}(s)_{11} \equiv s_{11}(\bmod N / d)$.
(2) $\psi_{d}^{1}\left(P_{d} \cap S_{0}(n, N)^{ \pm}\right) \subset S_{0}(k, d)^{ \pm}$.
(3) $\psi_{d}^{2}\left(P_{d} \cap S_{0}(n, N)^{ \pm}\right) \subset S_{0}(n-k, N / d)^{ \pm}$.
(4) There is an exact sequence of groups

$$
1 \rightarrow U_{d} \cap \Gamma_{0}^{ \pm}(n, N) \rightarrow P_{d} \cap \Gamma_{0}^{ \pm}(n, N) \xrightarrow{\psi_{d}^{1} \times \psi_{d}^{2}} \Gamma_{0}^{ \pm}(k, d) \times \Gamma_{0}^{ \pm}(n-k, N / d) \rightarrow 1
$$

Proof. Statements (1), (2), and (3) are proven as in [3, Theorem 7].
The only question in the exactness of the sequence in (4) is whether $\psi_{d}^{1} \times \psi_{d}^{2}$ is surjective. To show this surjectivity, suppose that $A=\left(a_{i j}\right) \in \Gamma_{0}^{ \pm}(k, d)$ and $B=\left(b_{i j}\right) \in$ $\Gamma_{0}^{ \pm}(n-k, N / d)$, choose $q, r \in \mathbb{Z}$ such that $q(N / d)+r(d)=a_{11}-b_{11}$ (which can be done since $\operatorname{gcd}(d, N / d)=1)$, and let Z be the block matrix

$$
Z=\left(\begin{array}{ll}
A & 0 \\
C & B
\end{array}\right)
$$

where $C=\left(c_{i j}\right)$ has

$$
c_{i j}= \begin{cases}0 & \text { if } i>1 \\ a_{1 j} / d & \text { if } i=1 \text { and } j>1, \\ r & \text { if } i=j=1\end{cases}
$$

We note that since $A \in \Gamma_{0}^{ \pm}(k, d)$, each of these entries is an integer. One checks easily that $g_{d}^{-1} Z g_{d} \in \Gamma_{0}^{ \pm}(n, N) \cap P_{d}$, and that $\left(\psi_{d}^{1} \times \psi_{d}^{2}\right)\left(g_{d}^{-1} Z g_{d}\right)=(A, B)$.

6. A spectral sequence

Definition 6.1. Let V be an n-dimensional vector space over a field K with $n>0$. For $0 \leq i \leq n$, let C_{i} be the set of all subspaces of V of dimension i.

Definition 6.2. Let V be an n-dimensional vector space over a field K with $n>0$. For $-1 \leq i \leq n-1$ define

$$
X_{i}=\bigoplus_{W \in C_{i+1}} \operatorname{St}(W) .
$$

We note that Theorem 4.2 yields an exact sequence of $\mathrm{GL}(n, K)$-modules,

$$
\begin{equation*}
0 \rightarrow X_{n-1} \rightarrow X_{n-2} \rightarrow \cdots \rightarrow X_{0} \rightarrow \mathbb{Z} \rightarrow 0 \tag{6.1}
\end{equation*}
$$

since $X_{-1} \cong \mathbb{Z}$.
Let $K=\mathbb{Q}$ and let \mathbb{F} be a field of characteristic $p>n+1$. Let $(\Gamma, S)=\left(\Gamma_{0}(n, N), S_{0}(n, N)\right)$, and let M be an admissible right S-module over \mathbb{F}. We apply the spectral sequence of [5, Section 8], to the exact sequence (6.1) to obtain

$$
\mathcal{E}_{q, r}^{1}=H_{r}\left(\Gamma, X_{q} \otimes M\right) \Longrightarrow H_{q+r}(\Gamma, M) .
$$

As in [5] this spectral sequence is equivariant for the action of the Hecke operators. For each q with $0 \leq q \leq n-1$, we choose a set \hat{C}_{q+1} of Γ-orbit representatives of C_{q+1}. For a $W \in \hat{C}_{q+1}$, let Γ_{W} be the stabilizer of W in Γ. Then we may decompose

$$
X_{q} \otimes M=\bigoplus_{W \in \hat{C}_{q+1}} \operatorname{Ind}_{\Gamma_{W}}^{\Gamma} \operatorname{St}(W) \otimes M
$$

into a finite direct sum of induced modules.
Now, by the Shapiro isomorphism, we obtain

$$
\mathcal{E}_{q, r}^{1} \cong \bigoplus_{W \in \hat{C}_{q+1}} H_{r}\left(\Gamma_{W}, \mathrm{St}(W) \otimes M\right)
$$

For $q<n-1$, we note that \hat{C}_{q+1} consists exactly of the subspaces W_{d}^{q}, as d runs through the divisors of N. In addition, $\Gamma_{W}=\Gamma \cap P_{d}$, which we will denote by $\Gamma_{P_{d}}$. For $q=n-1$, we have that $\hat{C}_{q+1}^{k}=V$. Hence, the first page of the spectral sequence has the following terms.

$$
\mathcal{E}_{q, r}^{1}= \begin{cases}H_{r}(\Gamma, \operatorname{St}(V) \otimes M) & \text { if } q=n-1, \\ \bigoplus_{d \mid N} H_{r}\left(\Gamma_{P_{d}^{q+1}}, \operatorname{St}\left(W_{d}^{q+1}\right) \otimes M\right) & \text { if } q<n-1 .\end{cases}
$$

The remainder of the paper is devoted to studying the terms of this spectral sequence, in order to show that for reducible Galois representations $\rho=\rho_{1} \oplus \rho_{2}$ satisfying certain conditions, ρ fits $\mathcal{E}_{q, r}^{1}$, and that the eigenvector with ρ attached either survives to the
infinity page of the spectral sequence, showing that ρ fits $H_{q+r}(\Gamma, M)$, or is killed off in such a way as to show that ρ nevertheless fits $H_{s}(\Gamma, M)$ for some value of s.

In order to proceed with this argument, it is necessary to show that the terms of the spectral sequence are finite-dimensional vector spaces over \mathbb{F}. For the terms with $q=n-1$, this follows immediately from Borel-Serre duality. For $q<n-1$, we prove the following theorem.

Theorem 6.3. Let $0<k<n$. Let $\Gamma=\Gamma_{0}(n, N)$, and assume that $p>n+1$. Let $P=P_{d}^{k}$ for some $d \mid N$, let $W=W_{d}^{k}$, and let M be a finite-dimensional Γ_{P}-module. Then for $r \geq 0$, the homology

$$
H_{r}\left(\Gamma_{P}, \mathrm{St}(W) \otimes M\right)
$$

is a finite dimensional vector space over \mathbb{F}.
Proof. For convenience, we will write $\operatorname{ker} \psi_{d}^{1}$ for $\operatorname{ker} \psi_{d}^{1} \cap \Gamma_{P}$ in this proof. We use the Hochschild-Serre spectral sequence for the exact sequence

$$
1 \rightarrow \operatorname{ker} \psi_{d}^{1} \rightarrow \Gamma_{P} \rightarrow \Gamma_{P} / \operatorname{ker} \psi_{d}^{1} \rightarrow 1
$$

This gives us a spectral sequence

$$
E_{i j}^{2}=H_{i}\left(\Gamma_{P} / \operatorname{ker} \psi_{d}^{1}, H_{j}\left(\operatorname{ker} \psi_{d}^{1}, \operatorname{St}(W) \otimes M\right)\right) \Longrightarrow H_{i+j}\left(\Gamma_{P}, \operatorname{St}(W) \otimes M\right),
$$

and if each term of the E^{2} page is finite dimensional, the abutment must be finite dimensional. Now $\operatorname{ker} \psi_{d}^{1}$ acts trivially on $\operatorname{St}(W)$, so a term $E_{i j}^{2}$ may be written as

$$
H_{i}\left(\Gamma_{P} / \operatorname{ker} \psi_{d}^{1}, \operatorname{St}(W) \otimes H_{j}\left(\operatorname{ker} \psi_{d}^{1}, M\right)\right)
$$

We now note that Theorem 5.2(4) implies that $\Gamma_{P} / \operatorname{ker} \psi_{d}^{1} \cong \psi_{d}^{1}\left(\Gamma_{P}\right)=\Gamma_{0}^{ \pm}(k, d)$, so, noting that conjugation by g_{d} takes the action of Γ_{P} on W to an action of $\psi_{d}^{1}\left(\Gamma_{P}\right)$ on W_{0}, we have that (as a vector space), $E_{i j}^{2}$ is isomorphic to

$$
H_{i}\left(\Gamma_{0}^{ \pm}(k, d), \operatorname{St}\left(W_{0}\right) \otimes H_{j}\left(\operatorname{ker} \psi_{d}^{1}, M\right)\right)
$$

where the action of $\gamma \in \Gamma_{0}^{ \pm}(k, d)$ on $H_{j}\left(\operatorname{ker} \psi_{d}^{1}, M\right)$ is obtained by choosing any $\gamma^{\prime} \in \Gamma_{P}$ with $\psi_{d}^{1}\left(\gamma^{\prime}\right)=\gamma$ and allowing γ^{\prime} to act on $H_{j}\left(\operatorname{ker} \psi_{d}^{1}, M\right)$. By Borel-Serre duality, $E_{i j}^{2}$ is then isomorphic to

$$
H^{i}\left(\Gamma_{0}^{ \pm}(k, d), H_{j}\left(\operatorname{ker} \psi_{d}^{1}, M\right)\right)
$$

which is finite dimensional since $\operatorname{ker} \psi_{d}^{1}$ is an arithmetic group and M is finite dimensional.

We also have the following related theorem.

Theorem 6.4. Let $0<k<n$. Let $\Gamma=\Gamma_{0}(n, N)$, and assume that $p>n+1$. Let $P=P_{d}^{k}$ for some d $\mid N$, let $W=W_{d}^{k}$, and let M be a finite-dimensional $\Gamma_{L}=\Gamma_{P} / \Gamma_{U}$-module. Then for $r \geq 0$, the homology

$$
H_{r}\left(\Gamma_{L}, \operatorname{St}(W) \otimes M\right)
$$

is a finite dimensional vector space over \mathbb{F}.
Proof. Since ψ_{d}^{1} is trivial on Γ_{U}, it yields a well defined function on Γ_{L}. The proof is then basically the same as the proof of Theorem 6.3.
Remark 6.5. If $(\Gamma, S)=\left(\Gamma_{0}(n, N), S_{0}(n, N)\right)$, and if P is a representative maximal parabolic subgroup stabilizing a subspace W, then the results of [5, Section 3] show that as long as $(*)$ given any $s \in S$ we can choose left coset representatives s_{α} for $\Gamma s \Gamma$ to be in S_{P}, there is an isomorphism $\mathcal{H}(\Gamma, S) \cong \mathcal{H}\left(\Gamma_{P}, S_{P}\right)$ and we can view $H_{r}\left(\Gamma_{P}, \operatorname{St}(W) \otimes M\right)$ as an $\mathcal{H}(\Gamma, S)$-module via this isomorphism. Hence, under condition ($*$), in studying systems of $\mathcal{H}(\Gamma, S)$-eigenvalues in $H_{r}\left(\Gamma_{P}, \operatorname{St}(W) \otimes M\right)$ we may study the homology as an $\mathcal{H}\left(\Gamma_{P}, S_{P}\right)$-module. In Theorem 8.6, we show that condition (*) holds.

7. Two cases of Hecke equivariance of the Hochschild-Serre spectral sequence

From this section on, we require definitions of additional subsets of $\mathrm{GL}(n, \mathbb{Q})$.
Definition 7.1. Let $P=P_{d}^{k}$ be a representative maximal parabolic subgroup of GL (n, \mathbb{Q}) for some $d \mid N$ and let p be a prime in \mathbb{Z}. We define the following subgroups and subsemigroups of $\mathrm{GL}(n, \mathbb{Q})$.
(1) $\Gamma(N)=\{A \in \operatorname{GL}(n, \mathbb{Z}): A \equiv I(\bmod N)\}$.
(2) $S_{k}(N)$ is the set of matrices $A \in \operatorname{GL}(n, \mathbb{Q})$ with integer entries and positive determinant prime to $p N$ such that $A \equiv \operatorname{diag}(1, \ldots, 1, *, 1, \ldots, 1, *)(\bmod N)$, with the $*$'s in the k and n positions.
(3) $\Gamma_{P}(N)=\Gamma(N) \cap P$.
(4) $S_{P}(N)=\left\{s \in S_{k}(N) \cap P: \psi_{d}^{1}(s), \psi_{d}^{2}(s)\right.$ both have positive determinant $\}$.

We now prove two results involving the Hecke equivariance of the Hochschild-Serre spectral sequence. The first of these results (Theorem 7.11) is closely related to Section 4 of [7]; however, the results here are more general. The second (Theorem 7.15) is similar to [1, Theorem 3.1].

Definition 7.2. Let P be a maximal parabolic subgroup of $\mathrm{GL}(n, \mathbb{Q})$ and let U be the unipotent radical of P. We note that $U(\mathbb{Q})$ is an abelian group, and we set r equal to the \mathbb{Q}-dimension of U. Let (Γ, S) be a congruence Hecke pair of level $p N$ (see [1, Definition 1.2]. Then Γ_{U} is a free abelian group of rank r. Let M be a (p, N)-admissible S-module.

Let T be the set of matrices $t \in \mathrm{GL}(n, \mathbb{Q})$ with determinant prime to $p N$ such that all denominators of both t and t^{-1} are prime to $p N$ and t normalizes $U(\mathbb{Q})$. Let C. be the standard resolution (also known as the bar resolution) of \mathbb{Z} over $\operatorname{GL}(n, \mathbb{Q})$. For $t \in T$, we define an action of t on $C_{\bullet} \otimes_{\Gamma_{U}} M$ by setting

$$
(c \otimes m) \cdot t=\frac{1}{d^{r}} \sum_{b} c u_{b} t \otimes m u_{b} t
$$

where d is any integer prime to p such that the right conjugation action of t on Γ_{U}^{d} is contained in Γ_{U}, and $\left\{u_{b}: 1 \leq b \leq d^{r}\right\}$ is a set of coset representatives for Γ_{U}^{d} inside Γ_{U}.

We can take $d=\operatorname{det}(t)$, so there is a d that fits the conditions of the definition (note that the condition that d be prime to p was inadvertently omitted in [7]). In [7, Lemma 4.3], this action of t is shown to be well defined; in particular, it does not depend on the choice of d or on the choice of coset representatives. It also commutes with the boundary operator. This action of individual elements of T does not normally extend to a group action of T on $C . \otimes_{\Gamma_{U}} M$. However, we now show that the action does, in fact, define a semigroup action of $S_{P} \subseteq T$ on $H_{*}\left(\Gamma_{U}, M\right)$ under certain hypotheses, making $H_{*}\left(\Gamma_{U}, M\right)$ an S_{P}-module. We note also that an element of T actually has entries in $\mathbb{Z}_{(p)}$ (the localization of \mathbb{Z} at the prime ideal (p)), so there is a well defined notion of reduction modulo p for such an element.

The proof of the following lemma is clear.
Lemma 7.3. Fix t and d as in Definition 7.2. Then the largest subgroup H of Γ_{U} such that $t^{-1} H t \subset \Gamma_{U}$ is

$$
H=\Gamma_{U} \cap t \Gamma_{U} t^{-1}
$$

and we have $\Gamma_{U}^{d} \subseteq H \subseteq \Gamma_{U}$. Hence, $\left[\Gamma_{U}: H\right] \mid d^{r}$, and is thus prime to p (since we may take $d=\operatorname{det}(t)$.

By [24, p. 51], we note that if we write $\Gamma_{U} t \Gamma_{U}=\coprod_{j=1}^{e_{t}} \alpha_{j} \Gamma_{U}$, then we have $e_{t}=\left[\Gamma_{U}\right.$: $H]$. There is a natural action of double cosets on homology and cohomology; when we consider the double coset $\Gamma_{U} t \Gamma_{U}$ as a Hecke operator, we will denote it by $\left[\Gamma_{U} t \Gamma_{U}\right]$. Since $C . \otimes_{\Gamma_{U}} M=H_{0}\left(\Gamma_{U}, C \cdot \otimes_{\mathbb{Z}} M\right)$, the Hecke operator $\left[\Gamma_{U} t \Gamma_{U}\right]$ acts on $C \bullet \otimes_{\Gamma_{U}} M$. This
action is given by

$$
c \otimes m\left[\Gamma_{U} t \Gamma_{U}\right]=\sum_{j=1}^{e_{t}} c \alpha_{j} \otimes m \alpha_{j}
$$

Lemma 7.4. Let $t \in T$. Then with the notation defined above, the action of t on $C \bullet M$ given in Definition 7.2 is equal to the action of $\frac{1}{e_{t}}\left[\Gamma_{U} t \Gamma_{U}\right]$.

Proof. The action of the Hecke operator $\left[\Gamma_{U} t \Gamma_{U}\right]$ is independent of the choice of coset representatives $\left\{\alpha_{j}\right\}$. We choose the α_{j} as follows: fix a collection of coset representatives $\left\{w_{j}: j=1, \ldots, e_{t}\right\}$ of H inside Γ_{U}, so that $\Gamma_{U}=\coprod_{j=1}^{e_{t}} w_{j} H$. Set $\alpha_{j}=w_{j} t$. One checks easily that the α_{j} thus defined give distinct cosets of Γ_{U} inside $\Gamma_{U} t \Gamma_{U}$; since there are e_{t} of them, they are a complete set of coset representatives.

Now choose a collection $\left\{v_{k}: k=1, \ldots,\left[H: \Gamma_{U}^{d}\right]\right\}$ of coset representatives of Γ_{U}^{d} inside H, so that $H=\amalg_{k} v_{k} \Gamma_{U}^{d}$. Then the set $\left\{w_{j} v_{k}\right\}$ is a complete collection of coset representatives of Γ_{U}^{d} inside Γ_{U}. Since the action of t is independent of the choice of coset representatives, we may choose $\left\{u_{b}\right\}=\left\{w_{j} v_{k}\right\}$. Since Γ_{U} is abelian, we have $w_{j} v_{k}=v_{k} w_{j}$. We then obtain

$$
\begin{aligned}
(c \otimes m) \cdot t & =\frac{1}{d^{n}} \sum_{b=1}^{d^{n}} c u_{b} t \otimes m u_{b} t \\
& =\frac{1}{d^{n}} \sum_{j, k} c v_{k} w_{j} t \otimes m v_{k} w_{j} t \\
& =\frac{1}{d^{n}} \sum_{j, k} c v_{k} \alpha_{j} \otimes m v_{k} \alpha_{j} \\
& =\frac{1}{d^{n}}\left(\sum_{k} c v_{k} \otimes m v_{k}\right)\left[\Gamma_{U} t \Gamma_{U}\right] \\
& =\frac{1}{d^{n}}\left(\sum_{k} c \otimes m\right)\left[\Gamma_{U} t \Gamma_{U}\right] \\
& =\frac{\left[H: \Gamma_{U}^{d}\right]}{\left[\Gamma_{U}: \Gamma_{U}^{d}\right]}(c \otimes m)\left[\Gamma_{U} t \Gamma_{U}\right] \\
& =\frac{1}{e_{t}}(c \otimes m)\left[\Gamma_{U} t \Gamma_{U}\right]
\end{aligned}
$$

where the v_{k} vanish in the sixth line because $v_{k} \in \Gamma_{U}$ and the tensor product is over Γ_{U}.

Let T^{\prime} be any subgroup of T such that every element of $T^{\prime} \cap U(\mathbb{Q})$ is congruent modulo p to an element of Γ_{U}. See Theorem 7.10 for examples where T^{\prime} may be taken to be the group generated by a semigroup S_{P}. We will show that for any such subgroup T^{\prime}, the individual actions of elements of T^{\prime} on $H_{k}\left(\Gamma_{U}, M\right)$ compile together into a group action. To do this, we need to show that the composition of the actions of $s, t \in T^{\prime}$ is equal to the action of $s t$. We will see that this can be done on the level of the homology groups $H_{k}\left(\Gamma_{U}, M\right)$, but not on the level of chains $C_{\bullet} \otimes_{\Gamma_{U}} M$. Our first step is the following lemma, from [24, p. 51] (since we are working with right modules, we have changed right cosets to left cosets).

Lemma 7.5. Let $s, t \in T$, and suppose that $\Gamma_{U} s \Gamma_{U}=\coprod_{i} s_{i} \Gamma_{U}$ and $\Gamma_{U} t \Gamma_{U}=\coprod_{j} t_{j} \Gamma_{U}$. We may choose a finite set $\Xi \subset T$ such that

$$
\Gamma_{U} s \Gamma_{U} t \Gamma_{U}=\coprod_{\xi \in \Xi} \Gamma_{U} \xi \Gamma_{U}
$$

Then in the Hecke algebra we have the equality

$$
\left[\Gamma_{U} s \Gamma_{U}\right]\left[\Gamma_{U} t \Gamma_{U}\right]=\sum_{\xi \in \Xi} m(\xi)\left[\Gamma_{U} \xi \Gamma_{U}\right]
$$

where $m(\xi)=\left|\left\{(i, j) \mid s_{i} t_{j} \Gamma_{U}=\xi \Gamma_{U}\right\}\right|$.
Lemma 7.6. With notation as in Lemma 7.5, for each $\xi \in \Xi$, we have $\xi=\operatorname{stu}(\xi)$ for some $u(\xi) \in U(\mathbb{Q})$, and

$$
\Gamma_{U} \xi \Gamma_{U}=\Gamma_{U} s t \Gamma_{U} u(\xi)
$$

In addition,

$$
\left[\Gamma_{U} s t \Gamma_{U}\right]\left[\Gamma_{U} u(\xi) \Gamma_{U}\right]=\left[\Gamma_{U} \xi \Gamma_{U}\right]
$$

and $e_{s t}=e_{\xi}$.
Proof. Since T normalizes $U(\mathbb{Q})$, and $U(\mathbb{Q})$ is abelian, this is immediate.
Lemma 7.7. Let $u \in T \cap U(\mathbb{Q})$, and assume that there is some $u^{\prime} \in \Gamma_{U}$ that is congruent to u modulo $p N$. Let M be a (p, N)-admissible T-module. Then $\left[\Gamma_{U} u \Gamma_{U}\right]$ acts trivially on the homology groups

$$
H_{*}\left(\Gamma_{U}, M\right)
$$

Proof. There is only one single coset in the double coset $\Gamma_{U} u \Gamma_{U}$, so the Hecke operator [$\Gamma_{U} u \Gamma_{U}$] acts on the homology as u does.

Since u centralizes Γ_{U}, it acts on the homology via its action on M. Since M is (p, N)-admissible the action of u^{\prime} and the action of u on M are the same. Hence, the action of u and the action of u^{\prime} on the homology are the same. However, u^{\prime} acts trivially on the homology, by [14, Proposition III.8.1].

Remark 7.8. We note that this lemma fails if we apply it on the chain level. This is because the chains, $C \otimes_{\Gamma_{U}} M=H_{0}\left(\Gamma_{U}, C \otimes_{\mathbb{Z}} M\right)$, although acted on by the Hecke operators, are the homology with coefficients in $C \otimes M$, which is not an admissible coefficient module.

Corollary 7.9. Let T^{\prime} be any subgroup of T such that every element of $T^{\prime} \cap U(\mathbb{Q})$ is congruent modulo p to an element of Γ_{U}. Let $s, t \in T^{\prime}$. Then, with notation as in Lemma 7.5, we have, for $z \in H_{*}\left(\Gamma_{U}, M\right)$,

$$
z\left[\Gamma_{U} s \Gamma_{U}\right]\left[\Gamma_{U} t \Gamma_{U}\right]=z\left(\sum_{\xi \in \Xi} m(\xi)\right)\left[\Gamma_{U} s t \Gamma_{U}\right] .
$$

Also,

$$
z \frac{1}{e_{s} e_{t}}\left[\Gamma_{U} s \Gamma_{U}\right]\left[\Gamma_{U} t \Gamma_{U}\right]=z \frac{1}{e_{s t}}\left[\Gamma_{U} s t \Gamma_{U}\right]
$$

and we see that the action of individual elements of T^{\prime} on $H_{*}\left(\Gamma_{U}, M\right)$ in Definition 7.2 yields a group action of T^{\prime} given by $z \cdot s=z \frac{1}{e_{s}}\left[\Gamma_{U} s \Gamma_{U}\right]$.
Proof. The first displayed equation follows immediately from Lemmas 7.6 and 7.7. For the second, by [24, Proposition 3.3], Lemma 7.5, and Lemma 7.6, we have

$$
\begin{aligned}
e_{s t} \sum_{\xi \in \Xi} m(\xi)=\sum_{\xi \in \Xi} e_{\xi} m(\xi) & =\operatorname{deg}\left(\left[\Gamma_{U} s \Gamma_{U}\right]\left[\Gamma_{U} t \Gamma_{U}\right]\right) \\
& =\operatorname{deg}\left(\left[\Gamma_{U} s \Gamma_{U}\right]\right) \operatorname{deg}\left(\left[\Gamma_{U} t \Gamma_{U}\right]\right)=e_{s} e_{t}
\end{aligned}
$$

Hence, by Lemma 7.4 and the above equation,

$$
(z \cdot s) \cdot t=z \frac{1}{e_{s} e_{t}}\left[\Gamma_{U} s \Gamma_{U}\right]\left[\Gamma_{U} t \Gamma_{U}\right]=z \frac{\sum m(\xi)}{e_{s} e_{t}}\left[\Gamma_{U} s t \Gamma_{U}\right]=z \frac{1}{e_{s t}}\left[\Gamma_{U} s t \Gamma_{U}\right]=z \cdot(s t)
$$

Theorem 7.10. Let $P=P_{d}^{k}$ for some $d \mid N$ and some k. Let (Γ, S) be either $\left(\Gamma(p N), S_{k}(p N)\right)$ or $\left(\Gamma_{0}(n, N), S_{0}(n, N)\right)$. Let $z \in H_{*}\left(\Gamma_{U}, M\right)$, and let $s, t \in S_{P}$. Then the action of individual elements of S_{P} on $H_{*}\left(\Gamma_{U}, M\right)$ in Definition 7.2 yields a semigroup action of S_{P} under which S_{U} acts trivially.

Proof. By the previous lemmas, we are finished if we can show that S_{P} lies in a subgroup T^{\prime} such that every element of $T^{\prime} \cap U(\mathbb{Q})$ is congruent modulo p to an element of Γ_{U}. It suffices to show that every element of $S_{P}^{-1} S_{P} \cap U(\mathbb{Q})$ is congruent modulo p to an element of Γ_{U}.

For $(\Gamma, S)=\left(\Gamma_{0}(n, N), S_{0}(n, N)\right)$ one checks that the intersection $S_{P}^{-1} S_{P} \cap U(\mathbb{Q})$ is contained in the set of matrices

$$
\mathcal{M}=\left\{\begin{array}{c|c}
g_{d}^{-1} & \left.\left(\begin{array}{c|c}
I_{k} & 0 \\
\hline A & I_{n-k}
\end{array}\right) g_{d}\right\}, \text {, }, \text {. }
\end{array}\right.
$$

where the entries of A are rational, with denominators prime to $p N$, and the entries in the top row of A have numerators divisible by N / d. The set $\Gamma_{U}=\Gamma \cap U$ consists of exactly those matrices in \mathcal{M} with integer entries. Since that any rational with denominator prime to $p N$ lies in $\mathbb{Z}_{(p)}$, we see that it is congruent modulo p to some integer. Thus, every element of \mathcal{M} is congruent modulo p to an element of Γ_{U}.

For $(\Gamma, S)=\left(\Gamma(p N), S_{k}(p N)\right)$, suppose that $u \in S_{P}^{-1} S_{P} \cap U(\mathbb{Q})$. Then $g_{d} u g_{d}^{-1} \in$ $S_{P}^{-1} S_{P} \cap U_{0}(\mathbb{Q})$ (where we use the fact that g_{d} normalizes $S_{k}(p N)$). Hence, $g_{d} u g_{d}^{-1} \equiv$ $\operatorname{diag}(1, \ldots, 1, *, 1, \ldots, 1, *)$ modulo $p N$, and has all diagonal elements equal to 1 , so $g_{d} u g_{d}^{-1} \equiv I_{n}(\bmod p N)$. Hence, $u \equiv I_{n}(\bmod p N)$, and we are finished.
Theorem 7.11. Let $P=P_{d}^{k}$ be a representative maximal parabolic subgroup of $\mathrm{GL}(n, \mathbb{Q})$ stabilizing the subspace $W=W_{d}^{k}$. Let M be a (p, N)-admissible S-module with $p>$ $n+1$. Let (Γ, S) equal $\left(\Gamma_{0}(n, N), S_{0}(n, N)\right)$ or $\left(\Gamma(p N), S_{k}(p N)\right)$. Then the Hecke algebra $\mathcal{H}\left(\Gamma_{P}, S_{P}\right)$ acts equivariantly on the Hochschild-Serre spectral sequence

$$
E_{i j}^{2}=H_{i}\left(\Gamma_{L}, H_{j}\left(\Gamma_{U}, \mathrm{St}(W) \otimes M\right)\right) \Longrightarrow H_{i+j}\left(\Gamma_{P}, \operatorname{St}(W) \otimes M\right),
$$

and a given packet of Hecke eigenvalues occurs in $H_{k}\left(\Gamma_{P}, \operatorname{St}(W) \otimes M\right)$ if and only if it appears in

$$
\bigoplus_{i+j=k} E_{i j}^{\infty}
$$

Proof. For the given congruence subgroups, S_{U} and Γ_{U} have the same image modulo $p N$, so the proof of [7, Theorem 4.6] applies with only minor changes to account for the factor of $\operatorname{St}(W)$, and with the appeal to [7, Theorem 4.4] (which requires the irreducibility of $H_{*}\left(\Gamma_{U}, M\right)$) replaced by an appeal to our Theorem 7.10, which requires that $U(\mathbb{Q})$ be abelian, which it is, since P is a maximal parabolic subgroup. Note that we need to use the finite dimensionality of each term in the E^{2} page of the spectral sequence (from Theorem 6.4) for the final statement to be true.

We will require one other instance of the Hecke invariance of the Hochschild-Serre spectral sequence. We refer again to ([1, p. 238]) for the definition of a Hecke pair, and give the definition of compatible Hecke pairs from [11]. Note that since we are working with left cosets rather than right cosets, we reverse the order of multiplication in this definition.

Definition 7.12 ([11, Definition 1.1.2]). A Hecke pair (Γ, S) is said to be compatible to the Hecke pair $\left(\Gamma^{\prime}, S^{\prime}\right)$ if
(1) $\Gamma \subseteq \Gamma^{\prime}$ and $S \subseteq S^{\prime}$,
(2) $\Gamma^{\prime} \cap S^{-1} S=\Gamma$,
(3) $S \Gamma^{\prime}=S^{\prime}$.

If (Γ, S) is compatible to $\left(\Gamma^{\prime}, S^{\prime}\right)$, then the natural map $\mathcal{H}(\Gamma, S) \rightarrow \mathcal{H}\left(\Gamma^{\prime}, S^{\prime}\right)$ of Hecke algebras is an isomorphism.
Lemma 7.13. Let $P=P_{d}^{k}$ for some positive $d \mid N$ and some k with $1 \leq k<n$ and let (Γ, S) be a Hecke pair such that $\Gamma(p N) \subset \Gamma, S_{k}(p N) \subset S$, the elements of S have positive determinant, and $S^{-1} S \cap \mathrm{SL}(n, \mathbb{Z})=\Gamma$. Then the Hecke pairs $\left(\Gamma_{P}(p N), S_{P}(p N)\right.$) and $\left(\Gamma_{P}, S_{P}\right)$ are compatible.

Proof. Note that $\Gamma \subseteq S \cap \operatorname{SL}(n, \mathbb{Z}) \subseteq S^{-1} S \cap \operatorname{SL}(n, \mathbb{Z})=\Gamma$, so $\Gamma=S \cap \operatorname{SL}(n, \mathbb{Z})$.
(1) Since $\Gamma_{P}(p N) \subset \Gamma_{P}$ and $S_{P}(p N) \subset S_{P}$, we have the necessary containments.
(2) We now wish to show that $\Gamma_{P} \cap S_{P}(p N)^{-1} S_{P}(p N)=\Gamma_{P}(p N)$. Let $s_{1}, s_{2} \in S_{P}(p N)$ and suppose that $s=s_{1}^{-1} s_{2} \in \Gamma_{P}$. Then s has integer entries and determinant 1 . We see that $\operatorname{det}\left(\psi_{d}^{i}(s)\right)= \pm 1$ for $i=1,2$; in fact, since each $\operatorname{det}\left(\psi_{d}^{i}(s)\right)>0$, each $\operatorname{det} \psi_{d}^{i}(s)=1$. We also have that $s \equiv \operatorname{diag}(1, \ldots, *, 1, \ldots, *)(\bmod p N)$. Hence, $g_{d} s g_{d}^{-1} \equiv \operatorname{diag}(1, \ldots, *, 1, \ldots, *)(\bmod p N)$ and we see that each $*$ must be 1 . Hence, $s \in \Gamma_{P}(N)$.
(3) Finally, let $s \in S_{P}$. Then

$$
g_{d} s g_{d}^{-1}=\left(\begin{array}{c|c}
s_{1} & 0 \\
\hline A & s_{2}
\end{array}\right) \in P_{0} .
$$

We easily find

$$
\gamma=\left(\begin{array}{c|c}
\gamma_{1} & 0 \\
\hline B & \gamma_{2}
\end{array}\right) \in \operatorname{SL}(n, \mathbb{Z}) \cap P_{0}
$$

such that $g_{d} s g_{d}^{-1} \gamma \equiv \operatorname{diag}(1, \ldots, *, 1, \ldots, *)(\bmod p N)$. This matrix has positive determinant; if $\operatorname{det}\left(s_{1} \gamma_{1}\right)<0$, we multiply γ on the right by the matrix $\operatorname{diag}(1, \ldots,-1,1, \ldots,-1)$. With this adjustment, we see that $s\left(g_{d}^{-1} \gamma g_{d}\right) \in S_{P}(p N)$. Then we see that $g_{d}^{-1} \gamma g_{d} \in \operatorname{SL}(n, \mathbb{Z}) \cap S^{-1} S_{k}(p N) \subset \operatorname{SL}(n, \mathbb{Z}) \cap S^{-1} S=\Gamma$ and is contained in P, so $g_{d} \gamma g_{d}^{-1} \in \Gamma_{P}$. Hence, $s \in S_{P}(p N) \Gamma_{P}$, as desired.

Remark 7.14. Note that $\left(\Gamma_{0}(n, N), S_{0}(n, N)\right)$ is a Hecke pair that satisfies the conditions of Lemma 7.13.

Theorem 7.15. Let (Γ, S) be a Hecke pair such that $\Gamma(p N) \subset \Gamma, S_{k}(p N) \subset S$, the elements of S have positive determinant, and $S^{-1} S \cap \operatorname{SL}(n, \mathbb{Z})=\Gamma$. Assume that $p>n+1$. Let $P=P_{d}$ with $d \mid N$. Any system of Hecke eigenvalues occurring in $H_{k}\left(\Gamma_{P}, \mathrm{St}(W) \otimes M\right)$ also appears in $H_{j}\left(\Gamma_{P}(p N), \operatorname{St}(W) \otimes M\right)$ for some $j \leq k$.

Proof. We have seen in Lemma 7.13 that the Hecke pairs $\left(\Gamma_{P}(p N), S_{P}(p N)\right)$ and $\left(\Gamma_{P}, S_{P}\right)$ are compatible. The Hochschild Serre spectral sequence for the exact sequence $0 \rightarrow$ $\Gamma_{P}(p N) \rightarrow \Gamma_{P} \rightarrow \Gamma_{P} / \Gamma_{P}(p N) \rightarrow 0$ computes $H_{i}\left(\Gamma_{P}, M\right)$ in two different ways (as in [14, VII.7.6] and [7, Theorem 4.6]) by using two spectral sequences to compute the total homology of the double complex

$$
F_{\bullet} \otimes_{\Gamma_{P} / \Gamma_{P}(p N)}\left(C \bullet \otimes_{\Gamma_{P}(p N)}(\operatorname{St}(W) \otimes M)\right),
$$

where $F_{\mathbf{\bullet}}$ is the standard resolution of \mathbb{Z} over the finite group $\Gamma_{P} / \Gamma_{P}(p N)$, and $C_{\mathbf{\bullet}}$ is the standard resolution of \mathbb{Z} over $\operatorname{GL}(n, \mathbb{Q})$. We let the Hecke algebra $\mathcal{H}\left(\Gamma_{P}(p N), S_{P}(p N)\right)$ (and hence, by compatibility, $\mathcal{H}\left(\Gamma_{P}, S_{P}\right)$) act on the double complex by its natural action on $C \bullet \otimes_{\Gamma_{P}(p N)}(\operatorname{St}(W) \otimes M)$ (with the trivial action on F_{\bullet}). This action commutes with the differentials of the double complex, and hence the spectral sequence is Hecke equivariant. Therefore, any system of Hecke eigenvalues appearing in the abutment $H_{k}\left(\Gamma_{P}, M\right)$ of the first spectral sequence must occur in the E^{1} page of the other, i.e., in $\left.F_{i} \otimes_{\Gamma_{P} / \Gamma_{P}(p N)} H_{j}\left(\Gamma_{P}(p N), \mathrm{St}(W) \otimes M\right)\right)$ for some $i+j=k$. This uses the fact that F_{i} has finite rank over \mathbb{Z} for each i, and the finite-dimensionality of each $\left.H_{j}\left(\Gamma_{P}(p N), \operatorname{St}(W) \otimes M\right)\right)$ (by adapting the proof of Theorem 6.3). Since we have chosen to have the Hecke algebra act trivially on F_{i}, the desired system of eigenvalues must appear in $H_{j}\left(\Gamma_{P}(p N), \mathrm{St}(W) \otimes M\right)$ for some $j \leq k$.

8. Hecke Matrices

Throughout this section, fix a positive squarefree integer N, a positive divisor $d \mid N$, a positive integer n, let $0<k<n$, and let P_{0} and g_{d} be defined as in Section 5. Let $\Gamma=\Gamma_{0}(n, N)$ and let $S=S_{0}(n, N)$.

We have defined $s(\ell, r, n)=\operatorname{diag}(1, \ldots, 1, \ell, \ldots, \ell)$ to be a diagonal $n \times n$ matrix with diagonal entries 1 and ℓ and determinant ℓ^{r}. The Hecke algebra $\mathcal{H}(\Gamma, S)$ is generated by the double cosets of $s(\ell, r, n)$ as ℓ varies over primes not dividing N and $0 \leq r \leq n$. The following description of left coset representatives of the double coset $\Gamma s \Gamma$ is easily confirmed.

Theorem 8.1. Set $\Gamma=\Gamma_{0}(n, N)$ and $S=S_{0}(n, N)$. Let $s=s(\ell, r, n)$ for $\ell \nmid p N$.
(1) In the decomposition $\Gamma s \Gamma=\amalg s_{\alpha} \Gamma$, we may take the s_{α} to be the set of lower triangular matrices $\left(a_{i j}\right)$ of determinant ℓ^{r}, where the entries $a_{i j}$ satisfy the following conditions:
(a) If $i<j$, then $a_{i j}=0$.
(b) Each $a_{i i}$ is either 1 or ℓ.
(c) If $i>j$, then $0 \leq a_{i j}<\ell$.
(d) If $a_{i i}=1$ or $a_{j j}=\ell$, then $a_{i j}=0$.
(2) For each $i<j$, let $R_{i j} \in \mathbb{Z}$ be a complete residue system modulo ℓ such that $0 \in R_{i j}$, and assume that every element of $R_{i j}$ is divisible by N if $i=1$. In the decomposition $\Gamma s \Gamma=\amalg s_{\alpha} \Gamma$, we may take the s_{α} to be the set of upper triangular matrices $\left(a_{i j}\right)$ of determinant ℓ^{r}, where the entries $a_{i j}$ satisfy the following conditions.
(a) If $i>j$ then $a_{i j}=0$.
(b) Each $a_{i i}$ is either 1 or ℓ.
(c) if $i<j$, then $a_{i j} \in R_{i j}$.
(d) If $a_{i i}=1$ or $a_{j j}=\ell$, then $a_{i j}=0$.

Remark 8.2. Typically we will take the $R_{i j}=\{0,1, \ldots, \ell-1\}$ for $i>1$, and $R_{i j}=$ $\{0, N, 2 N, \ldots,(\ell-1) N\}$ for $i=1$.

Definition 8.3. Let $\mathcal{T}_{n}(\ell, r)$ be the set of lower triangular s_{α} defined above, and let $\mathcal{T}^{n}(\ell, r)$ be the set of upper triangular s_{α} defined above. Note that we suppress the dependence of the set $\mathcal{T}^{n}(\ell, r)$ on N and the possible choices of M.

Theorem 8.4. Let $0<k<n$, and let $0 \leq r \leq n$, and let $s=s(\ell, r, n)$. The following set of matrices (given in block form) is a complete set of left coset representatives of $\Gamma s \Gamma$.

$$
\begin{array}{r}
\mathcal{T}(s, k)=\left\{\left(\begin{array}{ll}
t_{1} & 0 \\
& t_{2}
\end{array}\right): \max (0, r-(n-k)) \leq m \leq \min (r, k),\right. \\
\left.t_{1} \in \mathcal{T}^{k}(\ell, m), t_{2} \in \mathcal{T}_{n-k}(\ell, r-m)\right\}
\end{array}
$$

where the entries $a_{i j}$ in the lower left block (with $i>k$ and $j \leq k$) satisfy the following conditions:
(1) $1 \leq a_{i j} \leq \ell$
(2) $a_{i j}=0$ if $a_{i i}=1$ or $a_{j j}=\ell$

Proof. One can count the number of matrices in the set, and it is equal to the number of single coset representatives of s in the double coset $\Gamma s \Gamma$. It is a simple matter to check that no two of the matrices in the set are in the same coset.

Remark 8.5. Note that if we were to change the definition of $\mathcal{T}(s, k)$ so that $t_{1} \in \mathcal{T}_{k}(\ell, m)$, then the resulting set would just be $\mathcal{T}_{n}(\ell, r)$.

We now prove that we can choose the coset representatives of $\Gamma s \Gamma$ to be in P_{d}.

Theorem 8.6. Let $0<k<n, d \mid N$, and $P=P_{d}^{k}$, and let $s=s(\ell, r, n)$ with $\ell \nmid p N$. Then for each element $t \in \mathcal{T}(s, k)$, there is some $\gamma \in \Gamma_{0}(n, N)$ such that $t \gamma \in P_{d}$.

Proof. We distinguish five cases.
(1) Assume that the $(1,1)$ and the $(k+1, k+1)$ entries of t are both equal to 1 . Then we may take $\gamma=I$, and we see that $g_{d} t \gamma g_{d}^{-1} \in P_{0}$, so that $t \gamma \in P_{d}$.
(2) Assume that the $(1,1)$ and the $(k+1, k+1)$ entries of t are both equal to ℓ. Then we may take $\gamma=I$, and we see that $g_{d} t \gamma g_{d}^{-1} \in P_{0}$, so that $t \gamma \in P_{d}$.
(3) Assume that the (1,1)-entry of t is ℓ and the $(k+1, k+1)$ entry is 1 . We may choose $a, b \in \mathbb{Z}$ so that

$$
a(d)+b(\ell N / d)=1-\ell
$$

(since d and $\ell N / d$ are relatively prime). Let γ be the $n \times n$ matrix which is the identity, except for the $(1,1),(1, k+1),(k+1,1)$ and $(k+1, k+1)$ entries, which are (respectively) $1+b N / d, b N, a, \ell+a d$. Then $\gamma \in \Gamma$, and we check by direct computation that $g_{d} t \gamma g_{d}^{-1} \in P_{0}$.
(4) Assume that the $(1,1)$-entry of t is 1 and the $(k+1, k+1)$ entry is ℓ. Let e be the $(k+1,1)$ entry of t, and assume that $\ell \nmid e d+1$. Then we may choose a and b so that $a(\ell d)+b((e d+1) N / d)=1-(e d+1) \ell($ since ℓd and $(e d+1) N / d$ are relatively prime. Letting γ be the $n \times n$ matrix which is the identity, except for the $(1,1),(1, k+1),(k+1,1)$ and $(k+1, k+1)$ entries, which are (respectively) $\ell+b N / d, b N, a,(e d+1)+a d$, we see that $\gamma \in \Gamma$, and we check by direct computation that $g_{d} t \gamma g_{d}^{-1} \in P_{0}$.
(5) Assume that the $(1,1)$-entry of t is 1 and the $(k+1, k+1)$ entry is ℓ. Let e be the $(k+1,1)$ entry of t, and assume that $\ell \mid e d+1$. Then we may choose a and b so that

$$
a(d)+b\left(\frac{(e d+1)}{\ell} N / d\right)=1-\frac{(e d+1)}{\ell}
$$

(since d and $\frac{(e d+1) N}{\ell d}$ are relatively prime). Letting γ be the $n \times n$ matrix which is the identity, except for the $(1,1),(1, k+1),(k+1,1)$ and $(k+1, k+1)$ entries, which are (respectively) $1+b N / d, b N, a, \frac{(e d+1)}{\ell}+a d$, we see that $\gamma \in \Gamma$, and we check by direct computation that $g_{d} t \gamma g_{d}^{-1} \in P_{0}$.

Since any single coset representative of $\Gamma s \Gamma$ may be taken to be s, this theorem shows that for each $s=s(\ell, i, n)$, we can find an $s^{\prime} \in S_{P}$ with $\Gamma s \Gamma=\Gamma s^{\prime} \Gamma$.

The next theorem is designed to enable us to compute the Hecke operators on a tensor product of two Hecke modules. As such, it considers the Hecke operator $T_{n}(\ell, r)$ to be a sum in the free abelian group generated by single cosets. In order to facilitate the statement of this theorem, we make the following definitions.

Definition 8.7. Let N and k be positive integers. Set $C_{k, N}$ to be the set of left cosets of $\Gamma_{0}(k, N)$ inside $S_{0}(k, N)$. Denote by $F_{k, N}$ the free abelian group on the elements of $C_{k, N}$. For a collection \mathcal{S} of matrices in $S_{0}(k, N)$, we will write $\overline{\mathcal{S}}$ for the element

$$
\sum_{s \in \mathcal{S}} s \Gamma_{0}(k, N)
$$

Theorem 8.8. Let $0<k<n, d \mid N$, and $P=P_{d}$. Choose a prime ℓ with $\ell \nmid p N$, and let $s=s(\ell, r, n)$. Then in the tensor product $F_{k, d} \otimes_{\mathbb{Z}} F_{n-k, N / d}$, we have

$$
\begin{aligned}
& \sum_{t \in \mathcal{T}(s, k)} \psi_{d}^{1}(t) \Gamma_{0}(k, d) \otimes \psi_{d}^{2}(t) \Gamma_{0}(n-k, N / d) \\
&=\sum_{m=\max (0, r-(n-k))}^{\min (r, k)} \ell^{(k-m)(r-m)} \overline{\mathcal{T}_{k}(\ell, m)} \otimes \overline{\mathcal{T}^{n-k}(\ell, r-m)}
\end{aligned}
$$

Proof. We divide the elements of $T^{k}(\ell, m)$ into two subsets, $A^{k}(\ell, m)$ and $B^{k}(\ell, m)$, where $A^{k}(\ell, m)$ consists of elements of $\mathcal{T}^{k}(\ell, m)$ with a 1 in the $(1,1)$-position, and $B^{k}(\ell, m)$ consists of elements with an ℓ in the (1,1)-position. Then $\mathcal{T}^{k}(\ell, m)=A^{k}(\ell, m) \cup B^{k}(\ell, m)$. We also note that

$$
\mathcal{T}^{k}(\ell, m)=\left\{\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & t
\end{array}\right): t \in \mathcal{T}^{k-1}(\ell, m)\right\} \bigcup\left\{\left(\begin{array}{l|l}
\ell & r \\
\hline 0 & t
\end{array}\right): t \in \mathcal{T}^{k-1}(\ell, m-1)\right\}
$$

where the r runs through row vectors $\left(r_{2}, \ldots, r_{k}\right)$ with $r_{j}=0$ if the $(j-1, j-1)$ entry of t is ℓ, and $r_{j} \in R_{1 j}$ otherwise.

Similarly, we divide $\mathcal{T}_{n-k}(\ell, m)=A_{n-k}(\ell, m) \cup B_{n-k}(\ell, m)$, based on whether the $(1,1)$-entries are 1 or ℓ. Then

$$
A_{n-k}(\ell, m)=\left\{\left(\begin{array}{c|c}
1 & 0 \\
\hline c & t
\end{array}\right): t \in \mathcal{T}_{n-k-1}(\ell, m)\right\}
$$

and

$$
B_{n-k}(\ell, m)=\left\{\left(\begin{array}{c|c}
\ell & 0 \\
\hline 0 & t
\end{array}\right): t \in \mathcal{T}_{n-k-1}(\ell, m-1)\right\}
$$

where c runs through appropriate column vectors.
We now evaluate $\psi_{d}^{1}(t) \Gamma_{0}(k, d) \times \psi_{d}^{2}(t) \Gamma_{0}(n-k, N / d)$ for $t \in \mathcal{T}(r, k)$ in each of the five cases in the proof of Theorem 8.6. To illustrate the method, we give details of case (1), and just give the results of the other cases.
(1) In this case, we have that

$$
t=\left(\begin{array}{c|c}
t_{1} & 0 \\
\hline C & t_{2}
\end{array}\right)
$$

with $t_{1} \in A^{k}(\ell, m)$ and $t_{2} \in A_{n-k}(\ell, r-m)$, with $\max (0, r-(n-k)) \leq m \leq$ $\min (r, k)$ and the entries of C are between 0 and $\ell-1$ and an entry must be equal to 0 unless it lies beneath a 1 on the diagonal and to the left of a ℓ on the diagonal. For each choice of t_{1}, t_{2}, there are $\ell^{(k-m)(r-m)}$ distinct C that can occur. Multiplying by $\gamma=I_{n}$ and conjugating by g_{d} fixes t, so we have
$\psi_{d}^{1}(t) \Gamma_{0}(k, d) \otimes \psi_{d}^{2}(t) \Gamma_{0}(n-k, N / d)=t_{1} \Gamma_{0}(n-k, N / d) \otimes t_{2} \Gamma_{0}(n-k, N / d)$, and each element of $\overline{A^{k}(\ell, m)} \times \overline{A_{n-k}(\ell, r-m)}$ appears $\ell^{(k-m)(r-m)}$ times. In other words, as we allow m to vary, and go through all $t \in \mathcal{T}(r, k)$ that fall into case (1), we obtain

$$
\sum_{m=\max (0, r-(n-k))}^{\min (r, k-1)} \ell^{(k-m)(r-m)} \overline{A^{k}(\ell, m)} \otimes \overline{A_{n-k}(\ell, r-m)}
$$

(2) As t runs through all elements of $\mathcal{T}(r, k)$ that fall into case (2), we obtain

$$
\sum_{m=\max (0, r-(n-k))}^{\min (k, r)} \ell^{(k-m)(r-m)} \overline{B^{k}(\ell, m)} \otimes \overline{B_{n-k}(\ell, r-m)}
$$

(3) As t runs through all elements of $\mathcal{T}(r, k)$ that fall into case (3), we obtain

$$
\sum_{m=\max (0, r-(n-k))}^{\min (k, r)} \ell^{(k-m)(r-m)-1} \overline{A^{k}(\ell, m)} \otimes \overline{B_{n-k}(\ell, r-m)}
$$

(4) As t runs through all elements of $\mathcal{T}(r, k)$ that fall into case (4), we obtain

$$
\sum_{m=\max (0, r-(n-k))}^{\min (k, r)}\left(\ell^{(k-m)(r-m)}-\ell^{(k-m)(r-m)-1}\right) \overline{A^{k}(\ell, m)} \otimes \overline{B_{n-k}(\ell, r-m)} .
$$

(5) As t runs through all elements of $\mathcal{T}(r, k)$ that fall into case (5), we obtain

$$
\sum_{m=\max (0, r-(n-k))}^{\min (k, r)} \ell^{(k-m)(r-m)} \overline{B^{k}(\ell, m)} \otimes \overline{A_{n-k}(r-m)}
$$

Then cases (1), (3), and (4) add to

$$
\sum_{\max (0, r-(n-k))}^{\min (r, k)} \ell^{(k-m)(r-m)} \overline{A^{k}(\ell, m)} \otimes \overline{\mathcal{T}_{n-k}(\ell, r-m)}
$$

and cases (2) and (5) add to

$$
\sum_{\max (0, r-(n-k))}^{\min (r, k)} \ell^{(k-m)(r-m)} \overline{B^{k}(\ell, m)} \otimes \overline{\mathcal{T}_{n-k}(\ell, r-m)}
$$

Adding these, we obtain

$$
\sum_{\max (0, r-(n-k))}^{\min (r, k)} \ell^{(k-m)(r-m)} \overline{\mathcal{T}^{k}(\ell, m)} \otimes \overline{\mathcal{T}_{n-k}(\ell, r-m)}
$$

which is the desired result.

9. Twisting the action on the coefficients

Let M be a right $\operatorname{GL}\left(n, \mathbb{F}_{p}\right)$-module, let N be a positive integer prime to p, and let d be a positive divisor of N. Let $\epsilon:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{F}^{\times}$be a character. Let $S=S_{0}(n, N)$ act on M via reduction modulo p. Then M is an admissible $\mathbb{F}_{p}\left[S_{0}(n, N)\right]$-module. Let $\theta: S \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$take $s \in S$ to the $\bmod N$ reduction of its $(1,1)$ entry. As before, we define the nebentype character $S \rightarrow \mathbb{F}^{\times}$as the composition $\epsilon \circ \theta$. We will write $\epsilon(s)$ for this composition. Let M_{ϵ} be the module consisting of the elements of M, with the action of S adjusted to equal

$$
\left.m\right|_{\epsilon} s=\epsilon(s) m s
$$

Let $P_{0}=P_{0}^{k}$ be a standard maximal parabolic subgroup defined as in Section 5. As in that section, let $P=P_{d}=g_{d}^{-1} P_{0} g_{d}$. Let $S_{P}=S \cap P$. We denote by M_{ϵ}^{d} the S_{P}-module on which an element of S_{P} acts as

$$
\left.m\right|_{\epsilon} ^{d} s=\epsilon(s) m \cdot\left(g_{d} s g_{d}^{-1}\right)
$$

When using this notation, if $d=0$ we omit it; similarly if $\epsilon=1$ we omit it. As in [5, Section 5], we note that if $M=F\left(a_{1}, \ldots, a_{n}\right)$, then M^{d} is isomorphic to $F\left(a_{1}, \ldots, a_{n}\right)$, with g_{d} acting as an intertwining operator.

Let $\Gamma=\Gamma_{0}(n, N)$, let $U=U_{d}$ be the unipotent radical of $P_{d}, L=P / U$, and let $\Gamma_{U}=\Gamma \cap U, S_{U}=S \cap U$, and $S_{L}=S_{P} / S_{U}$. We note that $U(\mathbb{Z})$ is free abelian of rank $k(n-k) ; \Gamma_{U}$ is a subgroup of $U(\mathbb{Z})$ of finite index prime to p.

We now prove a special case of a version of Kostant's theorem in characteristic p in the top dimension.

Theorem 9.1. Let N be squarefree and prime to p, let $\epsilon:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{F}^{\times}$be a character, let $d \mid N$ and let $1 \leq k \leq n-1$. Let $P=P_{d}^{k}$ and let $U=U_{d}$ be the unipotent radical of P. Set $(\Gamma, S)=\left(\Gamma_{0}(n, N), S_{0}(n, N)\right)$. Let $r=k(n-k)$ be the \mathbb{Q}-dimension of U. Then
$H_{r}\left(\Gamma_{U}, F\left(a_{1}, \ldots, a_{n}\right)_{\epsilon}\right) \cong\left(F\left(a_{1}+(n-k), \ldots, a_{k}+(n-k)\right) \otimes F\left(a_{k+1}-k, \ldots, a_{n}-k\right)\right)_{\epsilon}^{d}$ as S_{L}-modules.
Proof. Set $M=F\left(a_{1}, \ldots, a_{n}\right)$. Since ϵ is trivial on Γ_{U}, we see that as an S_{P}-module, $H_{r}\left(\Gamma_{U}, M_{\epsilon}\right)=H_{r}\left(\Gamma_{U}, M\right)_{\epsilon}$. We note (as in [14, p. 79]) that $H_{r}\left(\Gamma_{U}, M\right) \cong H_{r}\left(g_{d} \Gamma_{U} g_{d}^{-1}, M\right)$ as abelian groups, with the isomorphism defined on the chain level by taking a resolution X of \mathbb{Z} as a $\operatorname{GL}(n, \mathbb{Q})$-module, and mapping $X \otimes_{\Gamma_{U}} M \rightarrow X \otimes_{g_{d} \Gamma_{U} g_{d}^{-1}} M$ by $x \otimes m \mapsto x g_{d}^{-1} \otimes m g_{d}^{-1}$. Under this isomorphism, the action of $s \in S_{P}$ on the left hand side converts to an action of $g_{d} s g_{d}^{-1}$ on the right hand side; hence, when we consider the homology groups as S_{P}-modules, we see that $H_{r}\left(\Gamma_{U}, M_{\epsilon}\right) \cong H_{r}\left(g_{d} \Gamma_{U} g_{d}^{-1}, M\right)_{\epsilon}^{d}$.

Since $g_{d} \Gamma_{U} g_{d}^{-1} \cong \Gamma_{U}$ is free abelian of rank r, we may view $H_{r}\left(g_{d} \Gamma_{U} g_{d}^{-1}, M\right)$ as the homology of a real r-torus with fundamental group $g_{d} \Gamma_{U} g_{d}^{-1}$ with local coefficient system determined by M. Taking f to be the fundamental class of the n-torus, we can identify elements in $H_{r}\left(g_{d} \Gamma_{U} g_{d}^{-1}, M\right)$ with elements of the form $f \otimes m$, where $m \in M^{g_{d} \Gamma_{U} g_{d}^{-1}}$. Now as $L(\mathbb{Z} / p \mathbb{Z})$-modules, we have

$$
M^{g_{d} \Gamma_{U} g_{d}^{-1}} \cong\left(M^{d}\right)^{\Gamma_{U}} \cong M^{\Gamma_{U}}=M^{U(\mathbb{Z} / p \mathbb{Z})} \cong\left(F\left(a_{1}, \ldots, a_{k}\right) \otimes F\left(a_{k+1}, \ldots, a_{n}\right)\right),
$$

where we use the fact that $M \cong M^{d}$ with g_{d} as an intertwining operator, that the $\bmod p$ reduction of Γ_{U} is $U(\mathbb{Z} / p \mathbb{Z})$, and [17, Corollary 5.10]. Using Definition 7.2 to compute the action of S_{P}, we note that the highest weight vector in $H_{r}\left(\Gamma_{U}, F\left(a_{1}, \ldots, a_{n}\right)\right)$ is the highest weight vector in $F\left(a_{1}, \ldots, a_{n}\right)^{U(\mathbb{Z} / p \mathbb{Z})}$. The weight of this vector is the weight $\left(a_{1}, \ldots, a_{n}\right)$ twisted by a certain character on the diagonal matrices in $g_{d} S_{P} g_{d}^{-1}$. The key point to determine this twist is the following. The action on the fundamental class is determined by the conjugation action of $t=\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right) \in g_{d} S_{P} g_{d}^{-1}$ on $\eta \in \bigwedge^{k(n-k)} U(\mathbb{Z})$ induced by the action $(t, \eta) \mapsto t^{-1} \eta t$ and this is given by the character

$$
\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right) \mapsto \frac{t_{1}^{n-k} \ldots t_{k}^{n-k}}{t_{k+1}^{k} \ldots t_{n}^{k}}
$$

Corollary 9.2. With notation as above, we may uniquely factor ϵ into a product of a character ϵ_{1} modulo d and ϵ_{2} modulo N / d. Then an element $s \in S_{P}$ acts on a simple tensor

$$
m_{1} \otimes m_{2} \in\left(F\left(a_{1}+(n-k), \ldots, a_{k}+(n-k)\right) \otimes F\left(a_{k+1}-k, \ldots, a_{n}-k\right)\right)_{\epsilon}^{d}
$$

by

$$
\left.\left(m_{1} \otimes m_{2}\right)\right|_{\epsilon} ^{d} s=\epsilon_{1}\left(\psi_{d}^{1}(s)\right) m_{1} \psi_{d}^{1}(s) \otimes \epsilon_{2}\left(\psi_{d}^{2}(s)\right) m_{2} \psi_{d}^{2}(s)
$$

Proof. By Theorem 5.2(1), $\psi_{d}^{1}(s)_{11} \equiv s_{11}(\bmod d)$ and $\psi_{d}^{2}(s)_{11} \equiv s_{11}(\bmod N / d)$, so $\epsilon_{1}\left(\psi_{d}^{1}(s)\right) \epsilon_{2}\left(\psi_{d}^{2}(s)\right)=\epsilon(s)$. In addition, we have

$$
g_{d} s g_{d}^{-1}=\left(\begin{array}{c|c}
\psi_{d}^{1}(s) & 0 \\
\hline * & \psi_{d}^{2}(s)
\end{array}\right)
$$

with the upper left block acting on the first component of $m_{1} \otimes m_{2}$, and the lower right block acting on the second component. The corollary follows.

10. Hecke operators and the Künneth formula

For $i=1,2$, let G_{i} be a group, and let M_{i} be an $\mathbb{F}\left[G_{i}\right]$-module. Let F_{i} be a resolution of \mathbb{Z} by projective $\mathbb{Z} G_{i}$-modules. Then [14, p. 109], we have an isomorphism of complexes of \mathbb{F}-vector spaces

$$
\left(F_{1} \otimes_{G_{1}} M_{1}\right) \otimes_{\mathbb{F}}\left(F_{2} \otimes_{G_{2}} M_{2}\right) \cong\left(F_{1} \otimes F_{2}\right) \otimes_{G \times G^{\prime}}\left(M_{1} \otimes M_{2}\right)
$$

given by $\left(f_{1} \otimes m_{1}\right) \otimes\left(f_{2} \otimes m_{2}\right) \mapsto\left(f_{1} \otimes f_{2}\right) \otimes\left(m_{1} \otimes m_{2}\right)$. Applying the Künneth formula to this isomorphism of complexes, we obtain an isomorphism (since we are working with modules over a field)

$$
\bigoplus_{r+s=n} H_{r}\left(G_{1}, M_{1}\right) \otimes_{\mathbb{F}} H_{S}\left(G_{2}, M_{2}\right) \rightarrow H_{n}\left(G_{1} \times G_{2}, M_{1} \otimes M_{2}\right)
$$

We will apply the Künneth isomorphism to the case of congruence subgroups, and study how it interacts with the action of Hecke operators.

Set $P=P_{d}^{k}=g_{d}^{-1} P_{0} g_{d}$, and denote by $U=U_{d}$ the unipotent radical of P, and by $L=L_{d}$ the Levi quotient P / U. The exact sequence $1 \rightarrow U_{0} \rightarrow P_{0} \rightarrow P_{0} / U_{0} \rightarrow 1$ splits, giving us that P_{0} / U_{0} is isomorphic to a subgroup $L_{0}^{1} \times L_{0}^{2}$ of P. In this case, L_{0}^{1} consists of block diagonal matrices $A \oplus I_{n-k}$, and L_{0}^{2} consists of block diagonal matrices $I_{k} \oplus B$. Then $L_{d}=P_{d} / U_{d}$ is isomorphic to the subgroup $L_{d}^{1} \times L_{d}^{2}$ of P_{d}, with $L_{d}^{i}=g_{d}^{-1} L_{0}^{i} g_{d}$.

Let $\Gamma=\Gamma_{0}(n, N), S=S_{0}(n, N), \Gamma^{ \pm}=\Gamma_{0}^{ \pm}(n, N)$, and $S^{ \pm}=S_{0}^{ \pm}(n, N)$. We note that the Hecke algebras $\mathcal{H}(\Gamma, S)$ and $\mathcal{H}\left(\Gamma^{ \pm}, S^{ \pm}\right)$are easily seen to be isomorphic, as are $\mathcal{H}\left(\Gamma_{P}, S_{P}\right)$ and $\mathcal{H}\left(\Gamma_{P}^{ \pm}, S_{P}^{ \pm}\right)$.

By Theorem 5.2, we see that $\Gamma_{L}^{ \pm}=\Gamma_{P}^{ \pm} / \Gamma_{U}^{ \pm}=\Gamma_{L^{1}}^{ \pm} \times \Gamma_{L^{2}}^{ \pm}$, where

$$
\Gamma_{L^{1}}^{ \pm}=\left(\psi_{d}^{1} \times \psi_{d}^{2}\right)^{-1}\left(\Gamma_{0}^{ \pm}(k, d) \times I_{n-k}\right) / \Gamma_{U}^{ \pm} \cong \Gamma_{0}^{ \pm}(k, d)
$$

and

$$
\Gamma_{L^{2}}^{ \pm}=\left(\psi_{d}^{1} \times \psi_{d}^{2}\right)^{-1}\left(I_{k} \times \Gamma_{0}^{ \pm}(n-k, N / d)\right) / \Gamma_{U}^{ \pm} \cong \Gamma_{0}^{ \pm}(n-k, N / d)
$$

Hence, by the Künneth isomorphism, if $M=M_{1} \otimes M_{2}$, where M_{i} is an L^{i}-module, we have

$$
\begin{aligned}
H_{k}\left(\Gamma_{L}^{ \pm}, \mathrm{St}\left(W_{d}\right) \otimes M\right) & \cong \bigoplus_{i+j=k} H_{i}\left(\Gamma_{L^{1}}^{ \pm}, \mathrm{St}\left(W_{d}\right) \otimes M_{1}\right) \otimes H_{j}\left(\Gamma_{L^{2}}^{ \pm}, M_{2}\right) \\
& \cong \bigoplus_{i+j=k} H_{i}\left(\Gamma_{0}^{ \pm}(k, d), \mathrm{St}\left(W_{0}\right) \otimes M_{1}^{d}\right) \otimes H_{j}\left(\Gamma_{0}^{ \pm}(n-k, N / d), M_{2}^{d}\right)
\end{aligned}
$$

after conjugating by g_{d}.
Let F_{i} be the standard resolution of \mathbb{Z} by $L^{i}(\mathbb{Q})$-modules. Then we may compute $H_{k}\left(\Gamma_{L}^{ \pm}, \mathrm{St}\left(W_{d}\right) \otimes M\right)$ as the homology of the complex

$$
\left(F_{1} \otimes_{\Gamma_{L^{1}}^{ \pm}} \operatorname{St}(W) \otimes M_{1}\right) \otimes\left(F_{2} \otimes_{\Gamma_{L^{2}}^{ \pm}} M_{2}\right) \cong\left(F_{1} \otimes F_{2}\right) \otimes_{\Gamma_{L}^{ \pm}}(\mathrm{St}(W) \otimes M),
$$

Since U acts trivially on $F_{1} \otimes F_{2}$ and on $\operatorname{St}(W) \otimes M$, we have that the Hecke algebra $\mathcal{H}\left(\Gamma_{P}, S_{P}\right)$ acts on the right hand complex, and therefore on the homology $H_{k}\left(\Gamma_{L}^{ \pm}, \operatorname{St}\left(W_{d}\right) \otimes\right.$ $M)$. Translating this action to the left-hand complex, and applying Theorem 8.8, we obtain the following theorem.

Theorem 10.1. Let $(\Gamma, S)=\left(\Gamma_{0}(n, N), S_{0}(n, N)\right)$, and let P_{d}^{k} be a representative maximal parabolic subgroup of $\mathrm{GL}(n, \mathbb{Q})$ for some $d \mid N$. Let M_{1} be a $\mathrm{GL}\left(k, \mathbb{F}_{p}\right)$-module and let M_{2} be a $\mathrm{GL}\left(n-k, \mathbb{F}_{p}\right)$-module. Let S_{P} act on $M_{1} \otimes M_{2} \operatorname{via}\left(m_{1} \otimes m_{2}\right) s=m_{1} \psi_{d}^{1}(s) \otimes m_{2} \psi_{d}^{2}(s)$. Then the natural action of $T_{n}(\ell, r) \in \mathcal{H}\left(\Gamma_{P}, S_{P}\right)$ on

$$
H_{t}\left(\Gamma_{L}^{ \pm}, \operatorname{St}\left(W_{d}\right) \otimes M_{1} \otimes M_{2}\right)
$$

is given on the component

$$
H_{r}\left(\Gamma_{0}^{ \pm}(k, d), \mathrm{St}\left(W_{0}\right) \otimes M_{1}\right) \otimes H_{t-r}\left(\Gamma_{0}^{ \pm}(n-k, N / d), M_{2}\right)
$$

by

$$
(f \otimes g)\left|T_{n}(\ell, r)=\sum_{m=\max (0, r-(n-k))}^{\min (r, k)} \ell^{(k-m)(r-m)} f\right| T_{k}(\ell, m) \otimes g \mid T_{n-k}(\ell, r-m) .
$$

The same holds true if $\operatorname{St}\left(W_{d}\right)$ and $\operatorname{St}(W)$ are removed from the formulas.
In terms of Hecke eigenvectors, we obtain the following two corollaries.
Corollary 10.2. Let $P=P_{d}^{k}$ be a representative maximal parabolic subgroup of $\mathrm{GL}(n, \mathbb{Q})$ of type $\left(k_{1}, k_{2}\right)=(k, n-k)$ with unipotent radical U and Levi quotient L, and denote the two components of the Levi quotient by L^{1} and L^{2}. Let M_{i} be an L^{i}-module, and $M=M_{1} \otimes M_{2}$. For $i=1,2$, let $f_{i} \in H_{p_{i}}\left(\Gamma_{L^{i}}^{ \pm}, M_{i}\right)$ be an eigenclass of all the Hecke
operators $T_{k_{i}}(\ell, j)$, with eigenvalues $a_{i}(\ell, j)$. Then $f_{1} \otimes f_{2}$, considered as an element of $H_{p_{1}+p_{2}}\left(\Gamma_{L}^{ \pm}, M\right)$, is an eigenclass of the Hecke operators $T_{n}(\ell, r)$, with eigenvalues

$$
c(\ell, r)=\sum_{m=\max \left(0, r-\left(n-k_{1}\right)\right)}^{\min \left(k_{1}, r\right)} \ell^{\left(k_{1}-m\right)(r-m)} a_{1}(\ell, m) a_{2}(\ell, r-m)
$$

If each f_{i} is attached to a Galois representation ρ_{i}, then $f_{1} \otimes f_{2}$ is attached to $\rho_{1} \oplus \omega^{k_{1}} \rho_{2}$. Proof. The values of the $c(\ell, r)$ follow immediately from Theorem 10.1. To see the statement about attachment, we let

$$
P_{i}(X, \ell)=\sum_{j=0}^{k_{i}}(-1)^{j} \ell^{j(j+1) / 2} a_{i}(\ell, j) X^{j}
$$

be the Hecke polynomial associated with f_{i}. We recall that attachment implies that

$$
P_{i}(X, \ell)=\operatorname{det}\left(I-\rho_{i}\left(\mathrm{Fr}_{\ell}\right) X\right)
$$

We note that

$$
P_{1}(X, \ell) P_{2}\left(\ell^{k_{1}} X, \ell\right)=\operatorname{det}\left(I-\left(\rho_{1} \oplus \omega^{k_{1}} \rho_{2}\right)\left(\mathrm{Fr}_{\ell}\right) X\right)
$$

Hence, in order to complete the proof, we need only show that the Hecke polynomial

$$
P(X, \ell)=\sum_{i=0}^{n}(-1)^{i} \ell^{i(i+1) / 2} c(\ell, i) X^{i}
$$

is equal to $P_{1}(X, \ell) P_{2}(X, \ell)$. This is a routine algebraic computation.
Corollary 10.3. Assume that $p>n+1$. Any system of simultaneous eigenvalues of the $T_{n}(\ell, m)$ acting on

$$
H_{r}\left(\Gamma_{0}^{ \pm}(k, d), \operatorname{St}\left(W_{0}\right) \otimes M_{1}\right) \otimes H_{s}\left(\Gamma_{0}^{ \pm}(n-k, N / d), M_{2}\right)
$$

arises as a tensor product of a simultaneous eigenvector of the $T_{k}(\ell, m)$ and a simultaneous eigenvector of the $T_{n-k}(\ell, m)$.

Hence, any system of simultaneous eigenvalues of the $T_{n}(\ell, m)$ acting on

$$
H_{r+s}\left(\Gamma_{L}^{ \pm}, \operatorname{St}\left(W_{d}\right) \otimes\left(M_{1} \otimes M_{2}\right)^{d}\right)
$$

appears as such a tensor product.
Proof. We can find a basis $\left\{v_{r}\right\}$ of $H_{i}\left(\Gamma_{0}^{ \pm}(k, d), \operatorname{St}(W) \otimes M_{1}\right)$ such that the actions of the $T_{k}(\ell, m)$ are all upper triangular, and a basis $\left\{w_{s}\right\}$ of $H_{j}\left(\Gamma_{0}^{ \pm}(n-k, N / d), M_{2}\right)$ with respect to which the $T_{n-k}(\ell, m)$ are all upper triangular. Then, by Theorem 10.1 and the Kronecker product, there is a basis $\left\{v_{r} \otimes w_{s}\right\}$ with respect to which all of the $T_{n}(\ell, m)$ are upper triangular. We can then read off the systems of simultaneous eigenvalues of the $T_{n}(\ell, m)$
from the diagonal elements of the matrix, and we see that they all arise from elements of the form $v \otimes w$.

The purpose of Theorem 10.1 is to construct eigenvectors of the Hecke algebra with predetermined eigenvalues in the homology of Γ_{L}. With this in mind, we now relate the homology of $\Gamma_{L}^{ \pm}$to the homology of Γ_{L}.

Theorem 10.4. Let M be an $S^{ \pm}$-module on which $S_{U}^{ \pm}$acts trivially, and assume that $p>n+1$. Then any system Φ of $\mathcal{H}\left(\Gamma_{P}, S_{P}\right)$-eigenvalues appearing in $H_{k}\left(\Gamma_{L}^{ \pm}, \operatorname{St}\left(W_{d}\right) \otimes M\right)$ appears in $H_{k}\left(\Gamma_{L}, \operatorname{St}\left(W_{d}\right) \otimes M\right)$.

Proof. Because $p>n+1$, we may use Borel-Serre duality. An argument similar to that in Theorem 6.3 shows that $H_{k}\left(\Gamma_{L}, \operatorname{St}\left(W_{d}\right) \otimes M\right)$ is finite dimensional.

As noted previously, the Hecke algebras $\mathcal{H}\left(\Gamma_{P}, S_{P}\right)$ and $\mathcal{H}\left(\Gamma_{P}^{ \pm}, S_{P}^{ \pm}\right)$are isomorphic. Hence, $\mathcal{H}\left(\Gamma_{P}, S_{P}\right)$ acts on both $H_{k}\left(\Gamma_{L}, \operatorname{St}\left(W_{d}\right) \otimes M\right)$ and on $H_{k}\left(\Gamma_{L}^{ \pm}, \operatorname{St}\left(W_{d}\right) \otimes M\right)$. The corestriction map cores : $H_{k}\left(\Gamma_{L}, \operatorname{St}\left(W_{d}\right) \otimes M\right) \rightarrow H_{k}\left(\Gamma_{L}^{ \pm}, \operatorname{St}\left(W_{d}\right) \otimes M\right)$ is easily seen to be an $\mathcal{H}\left(\Gamma_{P}, S_{P}\right)$ homomorphism. By the adaptation of [14, Proposition III.10.4] to homology, the corestriction factors as a composite

$$
H_{k}\left(\Gamma_{L}, \operatorname{St}\left(W_{d}\right) \otimes M\right) \rightarrow H_{k}\left(\Gamma_{L}, \operatorname{St}\left(W_{d}\right) \otimes M\right)_{\Gamma_{L}^{ \pm} / \Gamma_{L}} \rightarrow H_{k}\left(\Gamma_{L}^{ \pm}, \operatorname{St}\left(W_{d}\right) \otimes M\right)
$$

where the first map is surjective, and the second is an isomorphism. Since the corestriction map is Hecke equivariant and surjective, any system Φ of eigenvalues in the codomain must appear in the domain.

We now prove a similar theorem for principal congruence subgroups. Since conjugation by g_{d} preserves $\Gamma(N)$, we see easily that $\Gamma_{L}(N)=\Gamma_{L^{1}}(N) \times \Gamma_{L^{2}}(N)$ (since for instance, if $\gamma \in \mathrm{GL}(k, \mathbb{Z})$ is congruent to the identity, then $\left.g_{d}^{-1}\left(\gamma \oplus I_{n-k}\right) g_{d} \in \Gamma_{P}(N)\right)$. Hence, we may decompose

$$
H_{k}\left(\Gamma_{L}(N), \operatorname{St}(W) \otimes M_{1} \otimes M_{2}\right) \cong \bigoplus_{i+j=k} H_{i}\left(\Gamma_{L^{1}}(N), \operatorname{St}(W) \otimes M_{1}\right) \otimes H_{j}\left(\Gamma_{L^{2}}(N), M_{2}\right)
$$

Since $\left(\Gamma_{P}(N), S_{P}(N)\right)$ and $\left(\Gamma_{P}, S_{P}\right)$ are compatible Hecke pairs, $\mathcal{H}\left(\Gamma_{P}, S_{P}\right)$ acts on the above module, and we obtain the following theorem.

Theorem 10.5. Let Φ be a system of Hecke eigenvalues of all the $T_{n}(\ell, r)$ acting on $H_{t}\left(\Gamma_{L}(N), \mathrm{St}(W) \otimes M_{1} \otimes M_{2}\right)$. Assume that $p>n+1$. Then there is an eigenvector f with eigenvalue system Φ that can be written as $f=f_{1} \otimes f_{2}$ with $f_{1} \in H_{i}\left(\Gamma_{L^{1}}(N), \operatorname{St}(W) \otimes M_{1}\right)$ and $f_{2} \in H_{j}\left(\Gamma_{L^{2}}(N), M_{2}\right)$ each a simultaneous eigenvector of the appropriate Hecke algebra, with $i+j=t$. If f_{1} and f_{2} have attached Galois representations ρ_{1} and ρ_{2}, then $f_{1} \otimes f_{2}$ has attached Galois representation $\rho_{1} \oplus \omega^{k} \rho_{2}$.

Proof. Since $\left(\Gamma_{P}(p N), S_{P}(p N)\right)$ and $\left(\Gamma_{P}, S_{P}\right)$ are compatible, for $s=s(\ell, r, n) \in S_{P}$, we may choose $\gamma \in \Gamma_{P}$ and $\gamma_{\alpha} \in \Gamma_{P}$ such that

$$
\Gamma_{P} s \Gamma_{P}=\Gamma_{p} s \gamma \Gamma_{P}=\coprod_{s_{\alpha} \in \mathcal{T}(s, k)} s_{\alpha} \Gamma_{P}=\coprod_{s_{\alpha} \in \mathcal{T}(s, k)} s_{\alpha} \gamma_{\alpha} \Gamma_{P}
$$

and $s \gamma$ and each $s_{\alpha} \gamma_{\alpha} \in S_{P}(p N)$. Then, by compatibility, we have

$$
\Gamma_{P}(p N) s \gamma \Gamma_{P}(p N)=\coprod s_{\alpha} \gamma_{\alpha} \Gamma_{P}(p N) .
$$

We note that $\psi_{d}^{1}\left(s_{\alpha} \gamma_{\alpha}\right)=\psi_{d}^{1}\left(s_{\alpha}\right) \psi_{d}^{1}\left(\gamma_{\alpha}\right)$ and that $\psi_{d}^{1}\left(\gamma_{\alpha}\right) \in \Gamma_{0}^{ \pm}(k, d)$. If necessary, we may multiply γ_{α} by $\operatorname{diag}(1, \ldots,-1,1, \ldots,-1) \in \Gamma_{P}$ so that $\psi_{d}^{1}\left(\gamma_{\alpha}\right) \in \Gamma_{0}(k, d)$. Hence, the $\Gamma_{0}(k, d)$-coset $\overline{\psi_{d}^{1}\left(s_{\alpha}\right)}$ is the same as the coset of $\overline{\psi_{d}^{1}\left(s_{\alpha} \gamma_{\alpha}\right)}$. Using these facts, and the fact that $\left(\Gamma_{0}(d, k), S_{0}(d, k)\right)$ is compatible with the principal congruence Hecke pair of level $p N$ for $\operatorname{GL}(k)$ (and analogous facts for ψ_{d}^{2}), we see that

$$
\begin{aligned}
\sum_{s_{\alpha} \in \mathcal{T}(s, k)} \overline{\psi_{d}^{1}\left(s_{\alpha}\right)} \otimes \overline{\psi_{d}^{2}\left(s_{\alpha}\right)} & =\sum_{s_{\alpha} \in \mathcal{T}(s, k)} \overline{\psi_{d}^{1}\left(s_{\alpha} \gamma_{\alpha}\right)} \otimes \overline{\psi_{d}^{2}\left(s_{\alpha} \gamma_{\alpha}\right)} \\
& =\sum_{s_{\alpha} \in \mathcal{T}(s, k)} \overline{\psi_{d}^{1\left(s_{\alpha} \gamma_{\alpha}\right)} \otimes \overline{\psi_{d}^{2}\left(s_{\alpha} \gamma_{\alpha}\right)}} \\
& =\sum_{m=\max (0, r-(n-k)}^{\min (r, k)} \ell^{k-m} \overline{\mathcal{T}_{k}^{\prime}(\ell, m)} \otimes \mathcal{T}_{n-k}^{\prime} \overline{(\ell, r-m)},
\end{aligned}
$$

where $\mathcal{T}_{k}^{\prime}(\ell, m)$ is a collection of left coset representatives that compute $T_{k}(\ell, m)$ for the principal congruence Hecke pair, and the tildes represent cosets for the appropriate principal congruence subgroup. The theorem then follows exactly as in Theorem 10.1, Corollary 10.2, and Corollary 10.3.

11. Reducibility of Galois representations attached to homology of a parabolic subgroup

Throughout this section, we will let P be a maximal parabolic subgroup of $\mathrm{GL}(n, \mathbb{Q})$, with unipotent radical U and Levi subgroup L. We will also assume that (Γ, S) is a congruence Hecke pair such that Γ_{U} and S_{U} have the same reduction modulo p.

Lemma 11.1. Let A be a free abelian group of finite rank r, Let P be a maximal parabolic subgroup of $\mathrm{GL}(n, \mathbb{Q})$ with unipotent radical U, and suppose that $L(\mathbb{Z})=P(\mathbb{Z}) / U(\mathbb{Z})$ acts on A. Assume that there is an isomorphism $\varphi: A \rightarrow \mathbb{Z}^{r}$ and a representation $M: P(\mathbb{Z}) \rightarrow \mathrm{GL}(r, \mathbb{Z})$ that factors through $U(\mathbb{Z})$ such that

$$
\varphi(a \lambda)=\varphi(a) M(\lambda)
$$

for every $a \in A$ and $\lambda \in P(\mathbb{Z})$. Then $P(\mathbb{Z})$ acts on

$$
H_{k}(A, \mathbb{F}) \cong \bigwedge^{k}(A \otimes \mathbb{F})
$$

via $\bigwedge^{k}(M)$.
Proof. This follows immediately from the naturality of the isomorphism in [14, V.6.4 and the preceding page].
Lemma 11.2. Let P be a maximal parabolic subgroup of $\mathrm{GL}(n, \mathbb{Q})$, and let $s \in S_{P}$. The action of the Hecke operator $\left[\Gamma_{U} s \Gamma_{U}\right]$ on $H_{1}\left(\Gamma_{U}, \mathbb{Z}\right) \cong \Gamma_{U}$ described by Definition 7.2 is given on an element $u \in \Gamma_{U}$ by

$$
u\left[\Gamma_{U} s \Gamma u\right]=s^{-1}\left(u^{e_{s}}\right) s
$$

Proof. Let $H=\Gamma_{U} \cap s \Gamma_{U} s^{-1}$ be the largest subgroup of Γ_{U} such that $s^{-1} H s \subseteq \Gamma_{U}$. We have previously denoted $\left[\Gamma_{U}: H\right]$ by e_{s}, and noted that it is prime to p. The Hecke operator $\left[\Gamma_{U} s \Gamma_{U}\right]$ is given by the composition

$$
\Gamma_{U} \xrightarrow{\text { transfer }} H \xrightarrow{\alpha} s^{-1} H s \xrightarrow{\iota} \Gamma_{U},
$$

where the first map is the group-theoretic transfer, the second is conjugation by s, and the third is inclusion. By [21, Theorem 10.1.3], the transfer from Γ_{U} to H is just the e_{s}-power map. Hence,

$$
u\left[\Gamma_{U} s \Gamma_{U}\right]=s^{-1}\left(u^{e_{s}}\right) s
$$

where $u^{e_{s}} \in H$, since $\left[\Gamma_{U}: H\right]=e_{s}$.
For ease of notation, we will now consider Γ_{U} as a free abelian group written additively, and call it A. As above, we obtain an action of the Hecke algebra of Γ_{U} on $H_{1}\left(\Gamma_{U}, \mathbb{F}\right)=H_{1}\left(\Gamma_{U}, \mathbb{Z}\right) \otimes \mathbb{F} \cong A \otimes F ;$ namely $\left[\Gamma_{U} s \Gamma_{U}\right]$ acts on an element $a \otimes 1 \in A \otimes \mathbb{F}$ by taking it to

$$
\left(s^{-1}\left(e_{s} a\right) s\right) \otimes 1
$$

Note that on the free abelian group $e_{s} A \subset A$, conjugation by s is given (in terms of a basis of A) by a matrix $M(S) \in \operatorname{GL}(n, \mathbb{Q})$, all of whose denominators divide e_{s} (and are hence in $\mathbb{Z}_{(p)}$). This is the same matrix that describes the action of s (in terms of a \mathbb{Z}-basis of $A=\Gamma_{U}$) on $U(\mathbb{Q})$. Using the Pontryagin product (as in Lemma 11.1) to extend this action from $H_{1}\left(\Gamma_{U}, \mathbb{F}\right)$ to $H_{k}\left(\Gamma_{U}, \mathbb{F}\right)$ and invoking the last statement in Corollary 7.9, we obtain the following theorem.

Theorem 11.3. Let $M: S_{P} \rightarrow \operatorname{GL}\left(n, \mathbb{Z}_{(p)}\right)$ be the matrix that describes the action of S_{P} on $U(\mathbb{Q})$ in terms of a \mathbb{Z}-basis of Γ_{U}. Then the action of $s \in S_{P}$ on $H_{k}\left(\Gamma_{U}, \mathbb{F}\right)$ is given by the mod p reduction of $\bigwedge^{k} M$. In particular, $H_{k}\left(\Gamma_{U}, \mathbb{F}\right)$ is an admissible S_{P}-module.

We will apply this theorem in the following special case.
Corollary 11.4. For a maximal parabolic subgroup P of $\mathrm{GL}(n, \mathbb{Q})$, with Levi subgroup L and unipotent radical U, the homology $H_{k}\left(\Gamma_{U}(p N), \mathbb{F}\right)$ is an admissible $S_{P}(p N)$-module on which $\Gamma_{P}(p N)$ acts trivially.

If we denote reduction modulo $p N$ by a bar, then the map $D: S_{P}(p N) \rightarrow(\mathbb{Z} / p N \mathbb{Z})^{\times} \times$ $(\mathbb{Z} / p N \mathbb{Z})^{\times}$given by $\left.D(s)=\left(\overline{\operatorname{det}\left(\psi_{d}^{1}(s)\right.}\right), \overline{\operatorname{det}\left(\psi_{d}^{2}(s)\right.}\right)$ is a homomorphism with kernel equal to $\Gamma_{P}(p N)$. Hence, on any module M on which $S_{P}(p N)$ acts via reduction modulo $p, S_{P}(p N)$ acts through the image of D, which is an abelian group. Hence, it acts on any irreducible constituent of M via a character that factors through D. It follows that any irreducible constituent of M is of the form \mathbb{F}_{χ}, where χ is a character that factors through D.

Theorem 11.5. Let P be a maximal \mathbb{Q}-parabolic subgroup of $\mathrm{GL}(n, \mathbb{Q})$ with unipotent radical U and Levi quotient $L=P / U$ and let $(\Gamma, S)=\left(\Gamma_{0}(n, N), S_{0}(n, N)\right)$. Let W be the maximal proper P-stable subspace of \mathbb{Q}^{n} and let $k=\operatorname{dim}(W)$. Set $n_{1}=k$ and $n_{2}=n-k$. Assume that $p>n+1$. Let M be an irreducible (p, N)-admissible $\mathbb{F}[S]$-module, and let Φ be a system of $\mathcal{H}(\Gamma, S)$-eigenvalues occurring in $H_{t}\left(\Gamma_{P}, \mathrm{St}(W) \otimes M\right)$. Then there is some reducible Galois representation $\rho=\sigma_{1} \oplus \sigma_{2}$ with $\sigma_{i}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}\left(n_{i}, \mathbb{F}\right)$ that is attached to Φ.

Proof. We note that there is some $\gamma \in \Gamma_{0}(n, N)$ such that $\gamma P \gamma^{-1}=P_{d}=P_{d}^{k}$ for some $d \mid N$. Conjugation by γ then yields an isomorphism of $\mathcal{H}(\Gamma, S)$-modules

$$
H_{t}\left(\Gamma_{P}, \operatorname{St}(W) \otimes M\right) \cong H_{t}\left(\Gamma_{P_{d}}, \operatorname{St}(W) \otimes M\right),
$$

so that we may, without loss of generality, assume that $P=P_{d}$ and $W=W_{d}$ for some $d \mid N$.

Now, by Theorem 7.15, we may assume that Φ appears in

$$
H_{t}\left(\Gamma_{P}(p N), \operatorname{St}(W) \otimes M\right) .
$$

Given an exact sequence $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ of S_{P}-modules, since $\operatorname{St}(W) \otimes M_{i}=(\operatorname{St}(W) \otimes \mathbb{F}) \otimes_{\mathbb{F}} M_{i}$ and $\operatorname{St}(W) \otimes \mathbb{F}$ is a free (hence flat) \mathbb{F}-module, we see that

$$
0 \rightarrow \mathrm{St}(W) \otimes M_{1} \rightarrow \operatorname{St}(W) \otimes M_{2} \rightarrow \operatorname{St}(W) \otimes M_{2} \rightarrow 0
$$

is again an exact sequence of S_{P}-modules. Then (see [11, Lemma 2.1]) Φ must appear in

$$
H_{t}\left(\Gamma_{P}(p N), \mathrm{St}(W) \otimes M^{\prime}\right),
$$

where M^{\prime} is some irreducible constituent of M as an $S_{P}(p N)$-module. Now, $S_{P}(p N)$ acts on M^{\prime} via D composed with some character χ on $(\mathbb{Z} / N \mathbb{Z})^{\times} \times(\mathbb{Z} / N \mathbb{Z})^{\times}$, so M^{\prime} must be
isomorphic to \mathbb{F}_{χ}, and we see that Φ must actually appear in

$$
H_{t}\left(\Gamma_{P}(p N), \operatorname{St}(W) \otimes \mathbb{F}_{\chi}\right)
$$

Note that we may write χ as a product of two characters χ_{1}, χ_{2} on $(\mathbb{Z} / N \mathbb{Z})^{\times}$, where $\chi \circ D=\left(\chi_{1} \circ \operatorname{det} \circ \psi_{d}^{1}\right) \cdot\left(\chi_{2} \circ \operatorname{det} \circ \psi_{d}^{2}\right)$. We see easily that $\mathbb{F}_{\chi}=\mathbb{F}_{\chi_{1}} \otimes \mathbb{F}_{\chi_{2}}$.

By Theorem 7.11, we see that the Hochschild-Serre spectral sequence for $1 \rightarrow$ $\Gamma_{U}(p N) \rightarrow \Gamma_{P}(p N) \rightarrow \Gamma_{L}(p N) \rightarrow 1$ is Hecke equivariant, so Φ appears in some term

$$
H_{i}\left(\Gamma_{L}(p N), H_{j}\left(\Gamma_{U}(p N), \mathrm{St}(W) \otimes \mathbb{F}_{\chi}\right)\right) \cong H_{i}\left(\Gamma_{L}(p N), \mathrm{St}(W) \otimes H_{j}\left(\Gamma_{U}(p N), \mathbb{F}_{\chi}\right)\right)
$$

Now, by Corollary 11.4 , we see that $H_{j}\left(\Gamma_{U}(p N), \mathbb{F}_{\chi}\right) \cong H_{j}\left(\Gamma_{U}(p N), \mathbb{F}\right) \otimes \mathbb{F}_{\chi}$ is (p, N) admissible, and hence is acted on trivially by $\Gamma_{P}(p N)$. Using the fact that $\Gamma_{L}(p N) \cong$ $\Gamma_{L^{1}}(p N) \times \Gamma_{L^{2}}(p N)$, where $\Gamma_{L^{1}}(p N)$ is isomorphic to the principal congruence subgroup of $\mathrm{GL}(k, \mathbb{Z})$, and $\Gamma_{L^{2}}(p N)$ is isomorphic to the principal congruence subgroup of $\mathrm{GL}(n-k, \mathbb{Z})$, and $\Gamma_{L^{2}}(p N)$ acts trivially on $\operatorname{St}(W)$, we see that Φ must appear in

$$
\begin{aligned}
\left.H_{i}\left(\Gamma_{L}(p N), \operatorname{St}(W) \otimes \mathbb{F}_{\chi}\right)\right) & \left.\cong H_{i}\left(\Gamma_{L^{1}}(p N) \times \Gamma_{L^{2}}(p N), \operatorname{St}(W) \otimes \mathbb{F}_{\chi}\right)\right) \\
& \cong \bigoplus_{r+s=i} H_{r}\left(\Gamma_{L^{1}}(p N), \operatorname{St}(W) \otimes \mathbb{F}_{\chi_{1}}\right) \otimes H_{S}\left(\Gamma_{L^{2}}(p N), \mathbb{F}_{\chi_{2}}\right) \\
& \cong \bigoplus_{r+s=i} H^{r^{\prime}}\left(\Gamma_{L^{1}}(p N), \mathbb{F}_{\chi_{1}}\right) \otimes H_{S}\left(\Gamma_{L^{2}}(p N), \mathbb{F}_{\chi_{2}}\right),
\end{aligned}
$$

where $r^{\prime}=k(k-1) / 2-r$ (using Borel-Serre duality).
By Theorem 10.5, we see that the system of eigenvalues Φ must have an eigenvector $f_{1} \otimes f_{2}$, where

$$
f_{1} \in H^{r^{\prime}}\left(\Gamma_{L^{1}}(p N), \mathbb{F}_{\chi_{1}}\right)
$$

and

$$
f_{2} \in H_{s}\left(\Gamma_{L^{2}}(p N), \mathbb{F}_{\chi_{2}}\right)
$$

are eigenvectors for the appropriate Hecke algebras.
Now [22] shows (conditional on the stabilization of a twisted trace formula; see [22, p. 949]) that each of f_{i} has an attached Galois representation $\sigma_{i}: G_{\mathbb{Q}} \rightarrow \operatorname{GL}\left(n_{i}, \overline{\mathbb{F}}_{p}\right)$. Then by Theorem 10.5, we see that Φ has attached Galois representation $\rho=\sigma_{1} \otimes \omega^{k} \sigma_{2}$, as desired.

12. Application to $\mathrm{GL}(4)$ and reducible Galois representations

We now apply the theory that we have developed to the case of a Galois representation $\rho=\rho_{1} \oplus \rho_{2}$, where ρ_{1} and ρ_{2} are odd irreducible two-dimensional Galois representations, $\rho_{i}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}(2, \mathbb{F})$ such that the levels N_{i} of ρ_{i} are squarefree and relatively prime and $p>5$. Denote by ϵ_{i} the nebentype of ρ_{i}. Let ρ_{1} have Serre weight $F(a+2, b+2)$,
and let ρ_{2} have Serre weight $F(c, d)$. Note that we may adjust b modulo $p-1$ so that $0 \leq b-c \leq p-1$. One then easily checks that a predicted weight for $\rho_{1} \oplus \rho_{2}$ is $F(a, b, c, d)$.

Now, we know (since Serre's conjecture is a theorem) that ρ_{1} is attached to some Hecke eigenvector $f \in H^{1}\left(\Gamma_{0}^{ \pm}\left(2, N_{1}\right), F(a+2, b+2)_{\epsilon_{1}}\right)$ and (twisting by a character) that $\omega^{-2} \otimes \rho_{2}$ is attached to some Hecke eigenvector

$$
g \in H_{1}\left(\Gamma_{0}^{ \pm}\left(2, N_{2}\right), F(c-2, d-2)_{\epsilon_{2}}\right)
$$

By Borel-Serre duality ρ_{1} is attached to some eigenvector

$$
f^{\prime} \in H_{0}\left(\Gamma_{0}^{ \pm}\left(2, N_{1}\right), \mathrm{St}(W) \otimes F(a+2, b+2)_{\epsilon_{1}}\right),
$$

where $W=\mathbb{Q}^{2}$ is acted on in the natural way by $\Gamma_{0}^{ \pm}\left(2, N_{1}\right), S_{0}^{ \pm}\left(2, N_{1}\right) \subset G L(2, \mathbb{Q})$. Hence, by Corollary 10.2 and Theorem 10.4, we see that $\rho_{1} \oplus \rho_{2}$ is attached to a Hecke eigenvector in

$$
H_{1}\left(\Gamma_{L_{N_{1}}}, \operatorname{St}\left(W_{N_{1}}\right) \otimes(F(a+2, b+2) \otimes F(c-2, d-2))_{\epsilon_{1} \epsilon_{2}}^{N_{1}},\right.
$$

where $W_{N_{1}}$ is the space stabilized by $P_{N_{1}}^{2} \in \operatorname{GL}(4, \mathbb{Q})$.
Let ϵ be the character modulo $N_{1} N_{2}$ defined by $\epsilon=\epsilon_{1} \epsilon_{2}$.
Now, since $U_{N_{1}}$ acts trivially on $\operatorname{St}\left(W_{N_{1}}\right)$, we know by Theorem 9.1 that

$$
H_{4}\left(\Gamma_{U_{N_{1}}}, \operatorname{St}\left(W_{N_{1}}\right) \otimes F(a, b, c, d)_{\epsilon}\right) \cong \operatorname{St}\left(W_{N_{1}}\right) \otimes(F(a+2, b+2) \otimes F(c-2, d-2))_{\epsilon}^{N_{1}} .
$$

Hence, we see that $\rho_{1} \oplus \rho_{2}$ is attached to a Hecke eigenvector in

$$
H_{1}\left(\Gamma_{L_{N_{1}}}, H_{4}\left(\Gamma_{U_{N_{1}}}, \operatorname{St}\left(W_{N_{1}}\right) \otimes F(a, b, c, d)_{\epsilon}\right)\right)
$$

This is the E_{14}^{2} term in the Hochschild-Serre spectral sequence for the exact sequence $1 \rightarrow \Gamma_{U_{N_{1}}} \rightarrow \Gamma_{P_{N_{1}}} \rightarrow \Gamma_{L_{N_{1}}} \rightarrow 1$. Since the p-homological dimension of $\Gamma_{L_{N_{1}}}$ is two, this spectral sequence is only three columns wide; since E_{14}^{2} is in the center column, everything in it survives to the infinity page. Hence, $\rho_{1} \oplus \rho_{2}$ is attached to a Hecke eigenvector in $H_{5}\left(\Gamma_{0}\left(n, N_{1} N_{2}\right) \cap P_{N_{1}}, \operatorname{St}\left(W_{N_{1}}\right) \otimes F(a, b, c, d)_{\epsilon}\right)$.

Hence, $\rho_{1} \oplus \rho_{2}$ is attached to a Hecke eigenclass in the term \mathcal{E}_{15}^{1} of the spectral sequence of Section 6. This class cannot be killed off by elements in \mathcal{E}_{25}^{1} or \mathcal{E}_{05}^{1}, since any system of Hecke eigenvalues in those terms must be attached to a Galois representation that has a character as a direct summand by Theorem 11.5 (the semi-simplification of a Galois representation attached to a system of Hecke polynomials is unique up to isomorphism by the Cebotarev Density Theorem, the fact that the Frobenius elements generate the Galois group, and Brauer-Nesbitt Theorem). The only other way that the class could be killed off would be by an eigenclass in $\mathcal{E}_{3,4}^{2}$, in which case there must be a class in \mathcal{E}_{34}^{1} with $\rho_{1} \oplus \rho_{2}$ attached. Hence, we see that either $\rho_{1} \oplus \rho_{2}$ fits $H_{6}\left(\Gamma_{0}\left(N_{1} N_{2}\right), F(a, b, c, d)\right)$ or it fits

$$
\mathcal{E}_{34}^{1}=H_{4}\left(\Gamma_{0}(V), \mathrm{St}(V) \otimes F(a, b, c, d)\right) \cong H^{2}\left(\Gamma_{0}\left(N_{1} N_{2}\right), F(a, b, c, d)\right) .
$$

Since a Galois representation fits $H_{t}(\Gamma, M)$ if and only if it fits $H^{t}(\Gamma, M)$ [7, Lemma 2.4], we see that we have proved the following.

Theorem 12.1. Let $p>5$. For $i=1,2$, let $\rho_{i}: G_{\mathbb{Q}} \rightarrow \mathrm{GL}(2, \mathbb{F})$ be an odd irreducible Galois representation with level N_{i} and nebentype ϵ_{i}, and let $\epsilon=\epsilon_{1} \epsilon_{2}$. Then $\rho_{1} \oplus \rho_{2}$ is attached to a Hecke eigenclass in either $H_{6}\left(\Gamma_{0}\left(N_{1} N_{2}\right), M_{\epsilon}\right)$ or in $H_{2}\left(\Gamma_{0}\left(N_{1} N_{2}\right), M_{\epsilon}\right)$, where M is a weight for $\rho_{1} \oplus \rho_{2}$ predicted by the conjecture in [8].

Remark 12.2. We think it very unlikely that $\rho_{1} \oplus \rho_{2}$ fits $H_{2}\left(\Gamma_{0}\left(N_{1} N_{2}\right), M_{\epsilon}\right)$, but we know of no theorems that would prove that it can not.

We hope in a future paper to be able to extend this theorem to representations $\rho=\rho_{1} \oplus \rho_{2}$ where ρ is an odd Galois representation that is a sum of two odd irreducible n-dimensional Galois representations for arbitrarily large n, assuming that each constituent is attached to an appropriate homology Hecke eigenclass. Such an extension will require a better understanding of the terms of the Hochschild-Serre spectral sequence for the exact sequence $0 \rightarrow \Gamma_{U} \rightarrow \Gamma_{P} \rightarrow \Gamma_{L} \rightarrow 0$, which degenerates in the case $n=2$.

References

[1] Avner Ash. Galois representations attached to $\bmod p$ cohomology of GL($n, \mathbf{Z})$. Duke Math. J., 65(2):235-255, 1992.
[2] Avner Ash. Unstable cohomology of SL(n, O). J. Algebra, 167(2):330-342, 1994.
[3] Avner Ash. Direct sums of $\bmod p$ characters of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ and the homology of GL(n, \mathbb{Z}). Commun. Algebra, 41(5):1751-1775, 2013.
[4] Avner Ash. Comparison of Steinberg modules for a field and a subfield. J. Algebra, 507:200-224, 2018.
[5] Avner Ash and Darrin Doud. Reducible Galois representations and the homology of GL(3, ZZ). Int. Math. Res. Not., 5:1379-1408, 2014.
[6] Avner Ash and Darrin Doud. Galois representations attached to tensor products of arithmetic cohomology. J. Algebra, 465:81-99, 2016.
[7] Avner Ash and Darrin Doud. Relaxation of strict parity for reducible Galois representations attached to the homology of $\mathrm{GL}(3, \mathbb{Z})$. Int. J. Number Theory, 12(2):361-381, 2016.
[8] Avner Ash, Darrin Doud, and David Pollack. Galois representations with conjectural connections to arithmetic cohomology. Duke Math. J., 112(3):521-579, 2002.
[9] Avner Ash, Paul E. Gunnells, and Mark McConnell. Torsion in the cohomology of congruence subgroups of $\operatorname{SL}(4, \mathbb{Z})$ and Galois representations. J. Algebra, 325:404415, 2011.
[10] Avner Ash and Warren Sinnott. An analogue of Serre's conjecture for Galois representations and Hecke eigenclasses in the $\bmod p$ cohomology of $\operatorname{GL}(n, \mathbf{Z})$. Duke Math. J., 105(1):1-24, 2000.
[11] Avner Ash and Glenn Stevens. Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues. J. Reine Angew. Math., 365:192-220, 1986.
[12] Avner Ash and Pham Huu Tiep. Modular representations of GL($3, \mathbf{F}_{p}$), symmetric squares, and mod- p cohomology of GL(3, Z). J. Algebra, 222(2):376-399, 1999.
[13] Armand Borel and Jean-Pierre Serre. Corners and arithmetic groups. Comment. Math. Helv., 48:436-491, 1973.
[14] Kenneth S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathematics. Springer, 1994.
[15] Stephen R. Doty and Grant Walker. The composition factors of $\mathbf{F}_{p}\left[x_{1}, x_{2}, x_{3}\right]$ as a GL(3, p)-module. J. Algebra, 147(2):411-441, 1992.
[16] Florian Herzig. The weight in a Serre-type conjecture for tame n-dimensional Galois representations. Duke Math. J., 149(1):37-116, 2009.
[17] James E. Humphreys. Modular representations of finite groups of Lie type, volume 326 of London Mathematical Society Lecture Note Series. Cambridge University Press, 2006.
[18] Chandrashekhar Khare and Jean-Pierre Wintenberger. Serre's modularity conjecture. I. Invent. Math., 178(3):485-504, 2009.
[19] Chandrashekhar Khare and Jean-Pierre Wintenberger. Serre's modularity conjecture. II. Invent. Math., 178(3):505-586, 2009.
[20] Mark Kisin. Modularity of 2-adic Barsotti-Tate representations. Invent. Math., 178(3):587-634, 2009.
[21] Derek J. S. Robinson. A course in the theory of groups, volume 80 of Graduate Texts in Mathematics. Springer, second edition, 1996.
[22] Peter Scholze. On torsion in the cohomology of locally symmetric varieties. Ann. Math., 182(3):945-1066, 2015.
[23] Jean-Pierre Serre. Sur les représentations modulaires de degré 2 de $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$. Duke Math. J., 54(1):179-230, 1987.
[24] Goro Shimura. Introduction to the arithmetic theory of automorphic functions, volume 11 of Publications of the Mathematical Society of Japan. Princeton University Press, 1994.

Avner Ash
Boston College
Chestnut Hill MA 02467, USA avner.ash@bc.edu

Darrin Doud
Brigham Young University
Provo
UT 84602, USA
doud@math.byu.edu

[^0]: Keywords: Galois representations, arithmetic homology.
 2010 Mathematics Subject Classification: 11F75, 11R80.

