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Reducible Galois representations and arithmetic homology for GL(4)

Avner Ash
Darrin Doud

Abstract

We prove that a sum of two odd irreducible two-dimensional Galois representations with squarefree
relatively prime Serre conductors is attached to a Hecke eigenclass in the homology of a subgroup of
GL(4, Z), with the level, nebentype, and coefficient module of the homology predicted by a generalization
of Serre’s conjecture to higher dimensions. To do this we prove along the way that any Hecke eigenclass
in the homology of a congruence subgroup of a maximal parabolic subgroup of GL(n, Q) has a reducible
Galois representation attached, where the dimensions of the components correspond to the type of the
parabolic subgroup. Our main new tool is a resolution of Z by GL(n, Q)-modules consisting of sums of
Steinberg modules for all subspaces of Qn .

1. Introduction

Serre’s conjecture [23] (now a theorem of Khare, Wintenberger, and Kisin [18, 19, 20])
gives a connection between odd irreducible Galois representations ρ : GQ → GL(2, F̄p)
and modular forms that are simultaneous eigenvectors of all the Hecke operators. Via the
Eichler–Shimura isomorphism [24], it can be interpreted as giving a connection between
such Galois representations and elements of a cohomology group H1(Γ0(N),V) for an
appropriate coefficient moduleV . This interpretation of Serre’s conjecture was generalized
by [10] to a conjecture relating odd Galois representations ρ : GQ → GL(n, F̄p) to
eigenclasses of the Hecke operators in cohomology groups H∗(Γ0(n, N),V), where
Γ0(n, N) is the congruence subgroup of SL(n,Z) that generalizes Γ0(N) ⊂ SL(2,Z).
Refinements of the conjecture [8, 16] make more precise predictions concerning the
proper coefficient modules.

Some proven cases of the conjectured connection between Galois representations
and cohomology eigenclasses are known. In particular, the conjecture is known for two-
dimensional Galois representations. In [12], the conjecture is proven for certain irreducible
symmetric square representations of odd irreducible two-dimensional representations.

Our long-term goal is to prove the conjecture for any odd reducibleGalois representation
under the assumption that the conjecture holds for each constituent. In [3], odd Galois
representations that are sums of characters are shown to correspond to cohomology
eigenclasses. This work was extended in [5] to show that any sum of characters with
a Galois representation satisfying the conjecture such that the resulting representation
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is odd will satisfy the conjecture. In [6], it is shown that if ρ1 and ρ2 are two Galois
representations, each attached to a cohomology eigenclass with trivial coefficient module,
then a twisted sum of the two representations will also be attached to a cohomology
Hecke eigenclass with trivial coefficients (although not in the cohomology of a group of
the form Γ0(n, N)).

In this paper, we prove that Galois representations of the form ρ1 ⊕ ρ2 of squarefree
level N with ρ1 and ρ2 two-dimensional irreducible and odd are attached to Hecke
eigenclasses in the cohomology of Γ0(4, N). Together with our previous results cited
above, we have now proven the conjecture of [8] for all odd reducible four-dimensional
Galois representations, as long as the constituents have squarefree pairwise relatively
prime conductors, and satisfy the conjecture themselves.

The two main new tools that we use in the proof are an exact sequence of GL(n,K)-
modules for any field K that involves the Steinberg modules for GL(W) for all subspaces
W of Kn (Section 4), and Theorem 11.5 on the reducibility of Galois representations
attached to the cohomology of arithmetic subgroups of parabolic subgroups of GL(n,Q).

The exact sequence of Section 4 generalizes the exact sequence used in [5, 7], which
only works for n = 3, to arbitrary n. It is a resolution of Z by non-free modules which are
induced from various parabolic subgroups. Using a certain Hecke equivariant spectral
sequence arising from this exact sequence, we are able to construct a system of Hecke
eigenvalues that have ρ1 ⊕ ρ2 attached.

Our other main tool, Theorem 11.5 proves that any Hecke eigenclass attached to the
cohomology of a maximal parabolic subgroup of type (n1, n2) has an attached Galois
representation that is a sum of (possibly reducible) Galois representations ρ1 ⊕ ρ2, with
ρi : GQ → GL(ni, F̄p) for i = 1, 2.

On the more technical side, this paper includes extensions from n = 3 to general n
of the study we made in [5, 7] of orbits of subspaces of Qn under certain congruence
subgroups of GL(n,Z). We also study the action of a Levi component on the groups
H∗(Γ ∩U, M) appearing in the Hochschild–Serre spectral sequence for

1→ Γ ∩U → Γ ∩ P→ Γ ∩ L → 1,

where U is the unipotent radical of a maximal parabolic subgroup P = LU of GL(n,Q).
We show in Theorem 7.11 that under certain hypotheses, the Hecke algebra for ΓP
acts in an equivariant fashion on the spectral sequence. This is surprisingly hard to do
and we don’t even know if this continues to be the case if P is not maximal. A third
generalization of our earlier work concerns the detailed action of the matrices defining
the Hecke operators on the homology. The last new technical point regards the interplay
of the Hecke operators and the Künneth formula in Section 10.
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We expect to be able to apply these methods to higher dimensional Galois represen-
tations; at present, we are not able to because we have not yet been able to prove that
a certain Hochschild–Serre spectral sequence, used to construct the systems of Hecke
eigenvalues that we need, degenerates when n > 4.

We know that a system of Hecke eigenvalues appears in Hk(Γ0(n, N),V) if and only if
it appears in Hk(Γ0(n, N),V). We have discussed mostly cohomology in the introduction
to conform with common usage. Our theorems and proofs below will all be stated for
homology.

2. Galois representations, Hecke Operators, cohomology and homology

Let p > 2 be a prime number, and let F = Fp . Throughout the paper, we use Borel–Serre
duality for subgroups of GL(n,Z) [13, Section 11.4], and the fact that the Borel–Serre
duality isomorphism is Hecke equivariant [9, Corollary 3]; when we do this we will
require p > n + 1, so that no torsion element of GL(n,Z) has order divisible by p. By
a Galois representation we mean a continuous homomorphism ρ : GQ → GL(n, F) for
some positive integer n. For each prime `, we fix a choice of Frobenius element Fr` ∈ GQ;
we use the arithmetic Frobenius, so that if ω : GQ → F is the cyclotomic character,
ω(Fr`) = `. If ρ is unramified at `, then ρ(Fr`) is defined up to similarity. Hence, for ρ
unramified at `, the characteristic polynomial det(I − ρ(Fr`)X) of ρ(Fr`) is well defined.

Definition 2.1. Let n > 1 and N ∈ N, and let p be a prime in Z.

(1) S±0 (n, N) consists of the set of all n × n matrices with integer entries and nonzero
determinant prime to pN whose first row is congruent to (∗, 0, . . . , 0) modulo N .

(2) S0(n, N) consists of elements of S±0 (n, N) with positive determinant.

(3) Γ±0 (n, N) = S±0 (n, N) ∩ GL(n,Z).

(4) Γ0(n, N) = S0(n, N) ∩ SL(n,Z).

For a given prime p and positive integer N prime to p, (Γ0(n, N), S0(n, N)) is a Hecke
pair (see [1]), and we denote the F-algebra of its double cosets by Hn,N . We note that
Hn,N is commutative, and is generated by the double cosets

Γ0(n, N)s(`, n, k)Γ0(n, N),

where s(`, n, k) = diag(1, . . . , 1, `, . . . , `) is a diagonal matrix with k copies of ` on the
diagonal, ` runs over all primes not dividing pN , and 0 ≤ k ≤ n. The algebraHn,N acts
on the homology or cohomology of Γ0(n, N) with coefficients in any F[S0(n, N)]-module
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M . When the double coset of s(`, n, k) acts on homology or cohomology, we will denote
it by Tn(`, k).

Definition 2.2. Let V be any Hn,N -module, and suppose that v ∈ V is a simultaneous
eigenvector of all the Tn(`, k) for ` - pN , with eigenvalues a(`, k) ∈ F. Suppose that
ρ : GQ → GL(n, F) is a Galois representation unramified outside pN . We say that ρ is
attached to v if, for all ` - pN ,

det(I − ρ(Fr`)X) =
n∑

k=0
(−1)k`k(k−1)/2a(`, k)Xk .

If ρ is attached to v ∈ V , we will also say that ρ fits V .

3. Conjectures relating Galois representations and arithmetic homology/co-
homology

Definition 3.1 ([7]). Let S be a subsemigroup of the matrices in GL(n,Q) with integer
entries whose determinants are prime to pN . A (p, N)-admissible S-module M is an
F[S]-module of the form M ′ ⊗ Fε , where M ′ is an F[S]-module on which S ∩ GL(n,Q)+
acts via its reduction modulo p, and ε is a character ε : S → F× which factors through the
reduction of S modulo N . Here Fε is the vector space F, with S acting as multiplication via
ε . An admissible module is one which is (p, N)-admissible for some choice of p and N .

We can construct (p, N)-admissible modules by starting with GL(n, Fp)-modules, and
letting S act via reduction modulo p. We have the following parametrization of irreducible
GL(n, Fp)-modules.

Theorem 3.2 ([15]). Call an n-tuple of (a1, . . . , an) of integers p-restricted if 0 ≤ an <
p − 1 and, for each i < n, 0 ≤ ai − ai+1 ≤ p − 1. Then there is a bijection between
p-restricted n-tuples of integers and irreducible F[GL(n, Fp)]-modules, with the n-tuple
(a1, . . . , an) corresponding to the unique simple submodule of the dual Weyl module with
highest weight (a1, . . . , an).

Definition 3.3. Denote by F(a1, . . . , an) the irreducible F[GL(n, Fp)]-module correspond-
ing to the p-restricted n-tuple (a1, . . . , an).

As described above, F(a1, . . . , an) becomes an S-module on which S acts via reduction
modulo p. We will relax the condition on the value of an, allowing it to be an arbitrary
integer; this has the effect that a given module corresponds to infinitely many n-tuples, all
congruent to some p-restricted n-tuple modulo p− 1, and it allows flexibility in specifying
modules. Given a character ε : S → F× that factors through the reduction of S modulo N ,
we see that F(a1, . . . , an)ε = F(a1, . . . , an) ⊗ Fε is a (p, N)-admissible module.
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If S = S0(n, N) and ε : (Z/NZ)× → F× is a character, we will also denote by
ε : S → F× the character sending s ∈ S to the image under ε of the mod N reduction of
the (1, 1) entry of s. In this case, we call ε a nebentype character.

In order to state the main conjecture of [8], we recall the following definition.

Definition 3.4. For n > 1, a Galois representation ρ : GQ → GL(n, F) is odd if the
image of complex conjugation is similar to a matrix with alternating 1’s and −1’s on
the diagonal. A Galois representation ρ : GQ → GL(1, F) = F× is odd if the image of
complex conjugation is −1, and is called even otherwise.

Conjecture 3.5 ([8, Conjecture 3.1]). For any odd Galois representation ρ : GQ →
GL(n, F), we may find an integer N (called the level), an irreducible GL(n, Fp)-module
M (called the weight), and a Dirichlet character ε (called the nebentype), such that ρ fits
Hk(Γ0(N), Mε ).

In fact, [8, Conjecture 3.1] predicts the level, weight and nebentype from the structure of
ρ. We do not give these definitions in detail in this paper; see [8] for detailed descriptions.

In this paper, we will generalize techniques developed in [3, 5, 7] to prove the following
theorem.

Theorem 3.6. Let p > 5. For i = 1, 2, let ρi : GQ → GL(2, F) be odd, irreducible Galois
representations with squarefree relatively prime levels. Then ρ1 ⊕ ρ2 fits at least one of
H6(Γ0(n, N), Mε ) or H2(Γ0(n, N), Mε ), with N , M , and ε as predicted by [8].

4. A Steinberg module exact sequence

Throughout this section, fix a field K . In this section, we derive a resolution of Z by
GL(n,K)-modules that generalizes the resolution used in [5], which only works for
GL(3,K).

For a vector space W over K , denote by P(W) the projective space (W − {0})/K× of
nonzero vectors inW modulo scalar multiplication. For any collection w1, . . . ,wk ∈ P(W),
we will denote by span(w1, . . . ,wk) the subspace of W spanned by lifts of the wi to W
(we see easily that the span is independent of the choice of lifts).

We recall the definition of the sharbly complex.

Definition 4.1 ([2]). Let W be a k-dimensional vector space over a field K . For i ≥ 0,
define the i-sharblies Shi(W) to be the free Z-module generated by the (k + i)-tuples
(w1, . . . ,wk+i) for wi ∈ P(W), modulo the Z-span of the following elements:

(1) (wσ(1), . . . ,wσ(k+i)) − (−1)σ(w1, . . . ,wk+i) for all permutations σ ∈ Sk+i ,
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(2) (w1, . . . ,wk+i) if {w1, . . . ,wk+i} does not span W .

We denote a basis element of the i-sharblies by the symbol [w1, . . .wk+i] where each
wj ∈ P(W), with (1) implying that this symbol is antisymmetric in the entries, and (2)
implying that it is 0 if the entries do not span W . By considering GL(W) to act on W by
right multiplication, there is a natural right action of GL(W) on Shi(W). The boundary
map di : Shi(W) → Shi−1(W) is given by

di([w1, . . . ,wk+i]) =

k+i∑
j=1
(−1)j[w1, . . . , ŵj, . . . ,wk+i].

The sharbly complex is the complex of right GL(W)-modules

· · · → Shi(W)
di
−→ Shi−1(W) → · · · → Sh1(W)

d1
−→Sh0(W).

By [2] the Steinberg module St(W) is isomorphic to the cokernel of the map d1 :
Sh1(W) → Sh0(W), and therefore we get a resolution of the Steinberg module:

· · · → Shj(W) → Shj−1(W) → · · · → Sh1(W) → Sh0(W) → St(W) → 0.

We will denote the image of a 0-sharbly [w1, . . . ,wk] in St(W) by nw1, . . . ,wko. We
note that if W is 0-dimensional, the Steinberg module and the 0-sharblies are isomorphic
to Z (with trivial GL(W)-action), generated by the empty symbols n o and [ ]. If W is
1-dimensional, we also have that the Steinberg module and the 1-sharblies are isomorphic
to Z (with trivial GL(W)-action), generated by the symbols nwo and [w], where w is the
unique element of P(W).

Theorem 4.2. Let V be an n-dimensional vector space over K with n > 0. Then there is
an exact sequence of GL(V)-modules

0→
⊕
W n

St(Wn)
δn
−→

⊕
W n−1

St(Wn−1)
δn−1
−→ · · ·

δ2
−→

⊕
W 1

St(W1)
δ1
−→

⊕
W 0

St(W0) → 0,

where each W i runs through all subspaces of V of dimension i, and the map

δk :
⊕
W k

St(Wk) →
⊕
Wk−1

St(Wk−1)

is defined by

δk(nw1, . . . ,wko) =
k∑
j=1
(−1)jnw1, . . . , ŵj, . . . ,wko,

for nw1, . . . ,wko ∈ St(Wk), with Wk = span(w1, . . . ,wk) and

nw1, . . . , ŵj, . . . ,wko ∈ St(Wk−1
j ),

where Wk−1
j = span(w1, . . . , ŵj, . . . ,wk).
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Proof. For γ ∈ GL(V), and a generator nw1, . . . ,wko ∈ St(Wk), we define

nw1, . . . ,wkoγ = nw1γ, . . . ,wkγo ∈ St(Wkγ).

With this action, we see easily that ⊕
W k

St(Wk)

is a GL(V)-module and that δk is an equivariant map of GL(V)-modules.
We now check that each δk is a well defined map.
To begin, let W be a k-dimensional subspace of V . We may write the Steinberg

module of W as A(W)/(B(W) + C(W)), where A(W) is the free Z-module generated by
antisymmetric symbols (w1, . . . ,wk) with wi ∈ P(W), B(W) is generated by all such
symbols where w1, . . . ,wk are contained in a proper subspace of Wk , and C(W) is
generated by elements of the form

k∑
j=1
(−1)j(w1, . . . , ŵj, . . . ,wk).

Define φ : A(W) → ⊕ St(Wk−1) by

(w1, . . . ,wk) 7→

k∑
j=1
(−1)jnw1, . . . , ŵj, . . . ,wko.

Note that in any case where the symbol nw1, . . . , ŵj, . . . ,wko is not in a unique Steinberg
module because the dimension of the span of w1, . . . , ŵj, . . . ,wk is less than k − 1 =
dim Wk−1, the symbol vanishes, regardless of which module it is considered to lie in.
Hence, since A(W) is free over Z, φ is well-defined, and if φ maps both B(W) and C(W)
to 0, then the map δk that it induces on A(W)/(B(W) + C(W)) will be well defined.

Now φ maps C(W) to 0 by the standard argument that the boundary of the boundary is
0. Further, if (w1, . . . ,wk) ∈ B(W), then letting Wk−1 be a (k − 1)-dimensional subspace
of W containing w1, . . . ,wk , we find that

k∑
j=1
(−1)j(w1, . . . , ŵj . . . ,wk) ∈ C(Wk−1).

Now C(Wk−1) maps to 0 in St(Wk−1), so φ(w1, . . . ,wk) = 0 and φ(B(W)) = 0. Thus, we
see that δk is well defined.

It is clear that the composition δk−1 ◦ δk is equal to 0 for k > 0. In addition, δ1 is clearly
surjective, since there is only one zero-dimensional subspace of V and δ1(w) = −n o for
any w ∈ V .

Now we wish to prove that any element of ker δk is contained in the image of δk+1.
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Suppose that for some index set A, and some integers ca for a ∈ A, we have

s =
∑
a∈A

canwa
1 , . . . ,w

a
k o

is in the kernel of δk for 0 < k < n. We will show that it is in the image of δk+1.
Choose an arbitrary x ∈ P(V). Then∑

a

canx,wa
1 , . . . ,w

a
k o ∈

⊕
W k+1

St(Wk+1)

(note that some of the terms may be 0, if x ∈ span(wa
1 , . . . ,w

a
k
)). In any case, we have

δk+1

(∑
a

canx,wa
1 , . . . ,w

a
k o

)
= −

∑
a

canwa
1 , . . . ,w

a
k o

−
∑
a

k∑
j=1
(−1)jcanx,wa

1 , . . . , ŵ
a
j , . . . ,w

a
k o.

Adding this to s, we obtain a new element s′ ∈ ker δk that differs from s by an element of
the image of δk+1. It thus suffices to prove that s′ is in the image of δk+1. We note that
each symbol comprising s′ has as its first component the chosen x. Hence, (changing the
wa
i , the ca, and indeed the index set A), we may write

s′ =
∑
a∈A

canx,wa
2 , . . . ,w

a
k o.

By eliminating terms where {x,wa
2 , . . . ,w

a
k
} does not span a k-dimensional space, we

may also assume that for each a, we have x < span(wa
2 , . . . ,w

a
k
).

Now,

0 = δk(s′) = −
∑
a

canwa
2 , . . . ,w

a
k o −

k∑
j=1

∑
a

(−1)jcanx,wa
2 , . . . , ŵ

a
j , . . . ,w

a
k o.

Since, for each a, we have x < span(wa
2 , . . . ,w

a
k
), we see that no terms of the double sum

are in the same component of ⊕
W k−1

St(Wk−1)

as any term in the first sum. Hence, we must have∑
a

canwa
2 , . . . ,w

a
k o = 0.
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For each (k − 1)-dimensional subspace W of V , set AW = {a : span(wa
2 , . . . ,w

a
k
) = W}.

Then each a is in precisely one AW . We see that for each W∑
a∈AW

canwa
2 , . . . ,w

a
k o = 0.

For any W with AW nonempty, since the Steinberg module of W is the cokernel
of Sh1(W)

d1
−→Sh0(W), we see that there is an index set B, integers cb and elements

[yb1 , . . . , y
b
k
] ∈ Sh1(W) for each b ∈ B such that∑

a∈AW

ca[wa
2 , . . . ,w

a
k ] = d1

(∑
b∈B

cb[yb1 , . . . , y
b
k ]

)
=

∑
b∈B

k∑
j=1
(−1)jcb[yb1 , . . . , ŷ

b
j , . . . , y

b
k ].

Let Wx be the span of W and a lift of x. Then in Sh0(Wx) we have∑
a∈AW

ca[x,wa
2 , . . . ,w

a
k ] =

∑
b∈B

k∑
j=1
(−1)jcb[x, yb1 , . . . , ŷ

b
j , . . . , y

b
k ].

Hence, in St(Wx),∑
a∈AW

canx,wa
2 , . . . ,w

a
k o =

∑
b∈B

k∑
j=1
(−1)jcbnx, yb1 , . . . , ŷ

b
j , . . . , y

b
k o.

Because yb1 , . . . , y
b
k
span a (k − 1)-dimensional subspace, this equals

−
∑
b

©«cbnyb1 , . . . , ybk o −
k∑
j=1
(−1)jcbnx, yb1 , . . . , ŷ

b
j , . . . , y

b
k oª®¬ ,

which is equal to

−δk+1

(∑
b

cbnx, y1, . . . , yko
)
,

so that ∑
a∈AW

canx,wa
2 , . . . ,w

a
k o = δk+1

(
−

∑
b

cbnx, y1, . . . , yko
)
.

Since this is true for all W , we have that s′ =
∑

a canx,wa
2 , . . . ,w

a
k
o is in the image of

δk+1.
The proof that δn is injective is similar, but uses d1 : Sh1(V) → Sh0(V) in place of the

nonexistent δn+1, and is left to the reader (see [4, Theorem 2.1] for more details). �
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5. Γ0(n, N)-orbits of subspaces of Qn

By considering the elements of Qn as row vectors, right multiplication by elements of
GL(n,Q) yields a right action of GL(n,Q) on Qn. This action restricts to an action of
Γ0(n, N) onQn. In a natural way, we may also consider GL(n,Q) (and hence also Γ0(n, N))
as acting on the set of k-dimensional subspaces of Qn, for 0 ≤ k ≤ n. We wish to find
explicit representatives of the Γ0(n, N)-orbits of k-dimensional subspaces. Note that for
k = 0 and k = n, there is only one k-dimensional subspace, and hence only one orbit,
with a unique orbit representative.

Theorem 5.1. Let 0 < k < n and assume that N is squarefree. Then the Γ0(n, N)-orbits of
k-dimensional subspaces of Qn are in one-to-one correspondence with the set of positive
divisors of N , where the orbit corresponding to the divisor d contains the k-dimensional
subspace spanned by

e1 + dek+1, e2, e3, e4, . . . , ek,

where ei denotes the standard basis element of Qn with a 1 in the ith column, and 0’s
elsewhere.

Multiplication by elements of S±0 (n, N) preserves the Γ0(n, N)-orbits.

Proof. Let W be a k-dimensional subspace, and let M be a k × n matrix with integer
entries whose rows span W . For γ ∈ Γ0(n, N), Mγ has row space Wγ. Left multiplication
by an element of GL(k,Q) does not change the row space of a matrix, so we wish to find
a canonical element of the double coset

GL(k,Q)MΓ0(n, N).

Integer column operations on the rightmost n − 1 columns of M can be represented
by right multiplication by an element of Γ0(n, N); similarly, arbitrary row operations
correspond to left multiplication by an element of GL(k,Q). Using these operations we
find that the row space of M is Γ0(n, N)-equivalent to the row space of

M ′ =
(

a 0t
k−1 b 0 · · · 0

0k−1 Ik−1 0k−1 0k−1 · · · 0k−1

)
,

where a, b ∈ Z and gcd(a, b) = 1. Here, 0k−1 denotes the column vector of all zeros and
length k − 1, and 0t

k−1 denotes its transpose.
Since gcd(a, b) = 1, we may find r and s so that ar + bs = 1. Then for all ` ∈ Z,

a(r + b`) + b(s − a`) = 1 and for all d ∈ Z,

(a + d(s − a`))(r + b`) + (b − d(r + b`))(s − a`) = 1.
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Hence, the matrix

S =
(
r + `b −(b − d(r + `b))
s − a` a + d(s − a`)

)
has determinant 1. In order for it to be in Γ0(2, N), we need b − d(r + `b) = mN for some
m ∈ Z. To guarantee this, we choose d = gcd(b, N). Since N is squarefree, we see that
gcd(b, N/d) = 1, so that there are integers `,m with b` + mN/d = b/d − r. With this
choice of `, we see that S ∈ Γ0(2, N).

Form the matrix T by replacing the (1, 1), (1, k + 1), (k + 1, 1) and (k + 1, k + 1) entries
of In by the (1, 1), (1, 2), (2, 1), and (2, 2) entries of S. Then T is clearly in Γ0(n, N). Thus,
the row space of M is Γ0(n, N)-equivalent to the row space of

M ′T =
(

1 0t
k−1 d 0 · · · 0

0k−1 Ik−1 0k−1 0k−1 · · · 0k−1

)
.

Hence, every Γ0(n, N)-orbit of a k-dimensional subspace of Qn contains a subspace of
the proper form.

Suppose S ∈ S±0 (n, N) takes a subspace in the Γ0(n, N)-orbit corresponding to d |N , to
a subspace in the orbit corresponding to d ′ |N . Then, after multiplying S by an appropriate
element of Γ0(n, N) so that it takes the representative subspace of the orbit corresponding
to d to the representative corresponding to d ′, for some x ∈ Z, we must have

(1, 0tk−1, d, 0
t
n−k−1)S = (x, ∗, . . . , ∗, xd ′, 0tn−k−1).

If we now denote the (1, 1), (1, k + 1), (k + 1, 1) and (k + 1, k + 1) entries of S by a, bN , r ,
and s, respectively, and note that gcd(a, N) = 1, we see that we must have a + rd = x and
bN + sd = d ′x. Hence, bN + sd = d ′a + rdd ′, and we see that d |d ′a, so that d |d ′. Now
using that det(S) · S−1 = S′ ∈ S±0 (n, N), replacing S by S′, and reversing the roles of d
and d ′, we must similarly have d ′ |d. Hence, d = d ′. �

Now, let Wk
0 be the row space of the k × n matrix

M0 =

(
Ik

���� 0
)
.

Let gd be equal to the n × n identity matrix In, with the (1, k + 1) entry replaced by d. Let
Pk

0 be the stabilizer (in GL(n,Q), acting on the right) of Wk
0 . Define Pk

d
= g−1

d
P0gd; it is

the stabilizer of the row spaceWk
d
of M0gd , or in other words the stabilizer of the canonical

representative of the Γ0(n, N)-orbit of k-dimensional subspaces of Qn corresponding to
the divisor d of N . Typically, when k is understood, we will omit it, writing P0, Pd , or Wd

rather than Pk
0 , Pk

d
, or Wk

d
. We will call a subgroup Pd a representative maximal parabolic

subgroup, and denote its unipotent radical by Ud and its Levi quotient by Ld = Pd/Ud.
Note that Ud = g−1

d
U0gd , where U0 is the unipotent radical of P0.
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The subgroup P0 consists of block matrices(
A 0
B C

)
in which A is an invertible k × k matrix, C is an invertible (n − k) × (n − k) matrix, B
is an arbitrary (n − k) × k matrix, and the block of zeroes is k × (n − k). For a block
matrix g ∈ P0 as above, we define ψ1

0 (g) = A and ψ2
0 (g) = C. One sees easily that

ψ1
0 : P0 → GL(k,Q) and ψ2

0 : P0 → GL(n − k,Q) are group homomorphisms.
For s ∈ Pd , define ψi

d
(s) = ψi

0(gdsg−1
d
).

We have the following straightforward generalization of [3, Theorem 7].

Theorem 5.2. Let d be a positive divisor of N and assume that (d, N/d) = 1.

(1) If s ∈ Pd∩S0(n, N)±, thenψ1
d
(s)11 ≡ s11 (mod d) andψ2

d
(s)11 ≡ s11 (mod N/d).

(2) ψ1
d
(Pd ∩ S0(n, N)±) ⊂ S0(k, d)±.

(3) ψ2
d
(Pd ∩ S0(n, N)±) ⊂ S0(n − k, N/d)±.

(4) There is an exact sequence of groups

1→ Ud ∩ Γ
±
0 (n, N) → Pd ∩ Γ

±
0 (n, N)

ψ1
d
×ψ2

d
−→ Γ

±
0 (k, d) × Γ

±
0 (n − k, N/d) → 1.

Proof. Statements (1), (2), and (3) are proven as in [3, Theorem 7].
The only question in the exactness of the sequence in (4) is whether ψ1

d
× ψ2

d
is

surjective. To show this surjectivity, suppose that A = (ai j) ∈ Γ±0 (k, d) and B = (bi j) ∈
Γ±0 (n − k, N/d), choose q, r ∈ Z such that q(N/d) + r(d) = a11 − b11 (which can be done
since gcd(d, N/d) = 1), and let Z be the block matrix

Z =
(
A 0
C B

)
,

where C = (ci j) has

ci j =


0 if i > 1,
a1j/d if i = 1 and j > 1,
r if i = j = 1.

We note that since A ∈ Γ±0 (k, d), each of these entries is an integer. One checks easily that
g−1
d

Zgd ∈ Γ±0 (n, N) ∩ Pd , and that (ψ1
d
× ψ2

d
)(g−1

d
Zgd) = (A, B). �
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6. A spectral sequence

Definition 6.1. Let V be an n-dimensional vector space over a field K with n > 0. For
0 ≤ i ≤ n, let Ci be the set of all subspaces of V of dimension i.

Definition 6.2. Let V be an n-dimensional vector space over a field K with n > 0. For
−1 ≤ i ≤ n − 1 define

Xi =
⊕

W ∈Ci+1

St(W).

We note that Theorem 4.2 yields an exact sequence of GL(n,K)-modules,

0→ Xn−1 → Xn−2 → · · · → X0 → Z→ 0, (6.1)

since X−1 � Z.
LetK = Q and letF be a field of characteristic p > n+1. Let (Γ, S) = (Γ0(n, N), S0(n, N)),

and let M be an admissible right S-module over F. We apply the spectral sequence of [5,
Section 8], to the exact sequence (6.1) to obtain

E1
q,r = Hr (Γ, Xq ⊗ M) =⇒ Hq+r (Γ, M).

As in [5] this spectral sequence is equivariant for the action of the Hecke operators. For
each q with 0 ≤ q ≤ n − 1, we choose a set Ĉq+1 of Γ-orbit representatives of Cq+1. For a
W ∈ Ĉq+1, let ΓW be the stabilizer of W in Γ. Then we may decompose

Xq ⊗ M =
⊕

W ∈Ĉq+1

IndΓΓW St(W) ⊗ M

into a finite direct sum of induced modules.
Now, by the Shapiro isomorphism, we obtain

E1
q,r �

⊕
W ∈Ĉq+1

Hr (ΓW , St(W) ⊗ M).

For q < n − 1, we note that Ĉq+1 consists exactly of the subspaces Wq
d
, as d runs

through the divisors of N . In addition, ΓW = Γ ∩ Pd, which we will denote by ΓPd
. For

q = n − 1, we have that Ĉk
q+1 = V . Hence, the first page of the spectral sequence has the

following terms.

E1
q,r =


Hr (Γ, St(V) ⊗ M) if q = n − 1,⊕
d |N

Hr (ΓPq+1
d

, St(Wq+1
d
) ⊗ M) if q < n − 1.

The remainder of the paper is devoted to studying the terms of this spectral sequence,
in order to show that for reducible Galois representations ρ = ρ1 ⊕ ρ2 satisfying certain
conditions, ρ fits E1

q,r , and that the eigenvector with ρ attached either survives to the

219



Avner Ash & Darrin Doud

infinity page of the spectral sequence, showing that ρ fits Hq+r (Γ, M), or is killed off in
such a way as to show that ρ nevertheless fits Hs(Γ, M) for some value of s.

In order to proceed with this argument, it is necessary to show that the terms of the
spectral sequence are finite-dimensional vector spaces over F. For the terms with q = n−1,
this follows immediately from Borel–Serre duality. For q < n − 1, we prove the following
theorem.

Theorem 6.3. Let 0 < k < n. Let Γ = Γ0(n, N), and assume that p > n + 1. Let P = Pk
d

for some d |N , let W = Wk
d
, and let M be a finite-dimensional ΓP-module. Then for r ≥ 0,

the homology
Hr (ΓP, St(W) ⊗ M)

is a finite dimensional vector space over F.

Proof. For convenience, we will write kerψ1
d
for kerψ1

d
∩ ΓP in this proof. We use the

Hochschild–Serre spectral sequence for the exact sequence

1→ kerψ1
d → ΓP → ΓP/kerψ1

d → 1.

This gives us a spectral sequence

E2
i j = Hi(ΓP/kerψ1

d,Hj(kerψ1
d, St(W) ⊗ M)) =⇒ Hi+j(ΓP, St(W) ⊗ M),

and if each term of the E2 page is finite dimensional, the abutment must be finite
dimensional. Now kerψ1

d
acts trivially on St(W), so a term E2

i j may be written as

Hi(ΓP/kerψ1
d, St(W) ⊗ Hj(kerψ1

d, M)).

We now note that Theorem 5.2(4) implies that ΓP/kerψ1
d
� ψ1

d
(ΓP) = Γ

±
0 (k, d), so,

noting that conjugation by gd takes the action of ΓP on W to an action of ψ1
d
(ΓP) on W0,

we have that (as a vector space), E2
i j is isomorphic to

Hi(Γ
±
0 (k, d), St(W0) ⊗ Hj(kerψ1

d, M)),

where the action of γ ∈ Γ±0 (k, d) on Hj(kerψ1
d
, M) is obtained by choosing any γ′ ∈ ΓP

with ψ1
d
(γ′) = γ and allowing γ′ to act on Hj(kerψ1

d
, M). By Borel–Serre duality, E2

i j is
then isomorphic to

Hi(Γ±0 (k, d),Hj(kerψ1
d, M)),

which is finite dimensional since kerψ1
d
is an arithmetic group and M is finite

dimensional. �

We also have the following related theorem.
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Theorem 6.4. Let 0 < k < n. Let Γ = Γ0(n, N), and assume that p > n + 1. Let P = Pk
d

for some d |N , let W = Wk
d
, and let M be a finite-dimensional ΓL = ΓP/ΓU -module. Then

for r ≥ 0, the homology
Hr (ΓL, St(W) ⊗ M)

is a finite dimensional vector space over F.

Proof. Since ψ1
d
is trivial on ΓU , it yields a well defined function on ΓL . The proof is

then basically the same as the proof of Theorem 6.3. �

Remark 6.5. If (Γ, S) = (Γ0(n, N), S0(n, N)), and if P is a representative maximal parabolic
subgroup stabilizing a subspace W, then the results of [5, Section 3] show that as long
as (∗) given any s ∈ S we can choose left coset representatives sα for ΓsΓ to be in SP ,
there is an isomorphism H(Γ, S) � H(ΓP, SP) and we can view Hr (ΓP, St(W) ⊗ M)
as an H(Γ, S)-module via this isomorphism. Hence, under condition (∗), in studying
systems ofH(Γ, S)-eigenvalues in Hr (ΓP, St(W) ⊗ M) we may study the homology as an
H(ΓP, SP)-module. In Theorem 8.6, we show that condition (∗) holds.

7. Two cases of Hecke equivariance of the Hochschild–Serre spectral se-
quence

From this section on, we require definitions of additional subsets of GL(n,Q).

Definition 7.1. Let P = Pk
d
be a representative maximal parabolic subgroup of GL(n,Q)

for some d |N and let p be a prime in Z. We define the following subgroups and
subsemigroups of GL(n,Q).

(1) Γ(N) = {A ∈ GL(n,Z) : A ≡ I (mod N)}.

(2) Sk(N) is the set of matrices A ∈ GL(n,Q) with integer entries and positive
determinant prime to pN such that A ≡ diag(1, . . . , 1, ∗, 1, . . . , 1, ∗) (mod N),
with the ∗’s in the k and n positions.

(3) ΓP(N) = Γ(N) ∩ P.

(4) SP(N) = {s ∈ Sk(N) ∩ P : ψ1
d
(s), ψ2

d
(s) both have positive determinant}.

We now prove two results involving the Hecke equivariance of the Hochschild–Serre
spectral sequence. The first of these results (Theorem 7.11) is closely related to Section 4
of [7]; however, the results here are more general. The second (Theorem 7.15) is similar
to [1, Theorem 3.1].
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Definition 7.2. Let P be a maximal parabolic subgroup of GL(n,Q) and let U be the
unipotent radical of P. We note that U(Q) is an abelian group, and we set r equal
to the Q-dimension of U. Let (Γ, S) be a congruence Hecke pair of level pN (see [1,
Definition 1.2]. Then ΓU is a free abelian group of rank r . Let M be a (p, N)-admissible
S-module.

Let T be the set of matrices t ∈ GL(n,Q) with determinant prime to pN such that all
denominators of both t and t−1 are prime to pN and t normalizes U(Q). Let C• be the
standard resolution (also known as the bar resolution) of Z over GL(n,Q). For t ∈ T , we
define an action of t on C• ⊗ΓU M by setting

(c ⊗ m) · t =
1
dr

∑
b

cubt ⊗ mubt,

where d is any integer prime to p such that the right conjugation action of t on ΓdU is
contained in ΓU , and {ub : 1 ≤ b ≤ dr } is a set of coset representatives for ΓdU inside ΓU .

We can take d = det(t), so there is a d that fits the conditions of the definition (note that
the condition that d be prime to p was inadvertently omitted in [7]). In [7, Lemma 4.3],
this action of t is shown to be well defined; in particular, it does not depend on the choice
of d or on the choice of coset representatives. It also commutes with the boundary operator.
This action of individual elements of T does not normally extend to a group action of T on
C• ⊗ΓU M . However, we now show that the action does, in fact, define a semigroup action
of SP ⊆ T on H∗(ΓU, M) under certain hypotheses, making H∗(ΓU, M) an SP-module.
We note also that an element of T actually has entries in Z(p) (the localization of Z at
the prime ideal (p)), so there is a well defined notion of reduction modulo p for such an
element.

The proof of the following lemma is clear.

Lemma 7.3. Fix t and d as in Definition 7.2. Then the largest subgroup H of ΓU such
that t−1Ht ⊂ ΓU is

H = ΓU ∩ tΓU t−1,

and we have ΓdU ⊆ H ⊆ ΓU . Hence, [ΓU : H]|dr , and is thus prime to p (since we may
take d = det(t).

By [24, p. 51], we note that if we write ΓU tΓU =
∐et

j=1 αjΓU , then we have et = [ΓU :
H]. There is a natural action of double cosets on homology and cohomology; when we
consider the double coset ΓU tΓU as a Hecke operator, we will denote it by [ΓU tΓU ]. Since
C• ⊗ΓU M = H0(ΓU,C• ⊗Z M), the Hecke operator [ΓU tΓU ] acts on C• ⊗ΓU M. This
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action is given by

c ⊗ m[ΓU tΓU ] =
et∑
j=1

cαj ⊗ mαj .

Lemma 7.4. Let t ∈ T . Then with the notation defined above, the action of t on C• ⊗ M
given in Definition 7.2 is equal to the action of 1

et
[ΓU tΓU ].

Proof. The action of the Hecke operator [ΓU tΓU ] is independent of the choice of coset
representatives {αj}. We choose the αj as follows: fix a collection of coset representatives
{wj : j = 1, . . . , et } of H inside ΓU , so that ΓU =

∐et
j=1 wjH. Set αj = wj t. One checks

easily that the αj thus defined give distinct cosets of ΓU inside ΓU tΓU ; since there are et
of them, they are a complete set of coset representatives.

Now choose a collection {vk : k = 1, . . . , [H : ΓdU ]} of coset representatives of Γ
d
U

inside H, so that H =
∐

k vkΓ
d
U . Then the set {wjvk} is a complete collection of coset

representatives of ΓdU inside ΓU . Since the action of t is independent of the choice of
coset representatives, we may choose {ub} = {wjvk}. Since ΓU is abelian, we have
wjvk = vkwj . We then obtain

(c ⊗ m) · t =
1

dn

dn∑
b=1

cubt ⊗ mubt

=
1

dn

∑
j,k

cvkwj t ⊗ mvkwj t

=
1

dn

∑
j,k

cvkαj ⊗ mvkαj

=
1

dn

(∑
k

cvk ⊗ mvk

)
[ΓU tΓU ]

=
1

dn

(∑
k

c ⊗ m

)
[ΓU tΓU ]

=
[H : ΓdU ]
[ΓU : ΓdU ]

(c ⊗ m)[ΓU tΓU ]

=
1
et
(c ⊗ m)[ΓU tΓU ],

where the vk vanish in the sixth line because vk ∈ ΓU and the tensor product is over
ΓU . �
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Let T ′ be any subgroup of T such that every element of T ′∩U(Q) is congruent modulo
p to an element of ΓU . See Theorem 7.10 for examples where T ′ may be taken to be the
group generated by a semigroup SP . We will show that for any such subgroup T ′, the
individual actions of elements of T ′ on Hk(ΓU, M) compile together into a group action.
To do this, we need to show that the composition of the actions of s, t ∈ T ′ is equal to
the action of st. We will see that this can be done on the level of the homology groups
Hk(ΓU, M), but not on the level of chains C• ⊗ΓU M . Our first step is the following lemma,
from [24, p. 51] (since we are working with right modules, we have changed right cosets
to left cosets).

Lemma 7.5. Let s, t ∈ T , and suppose that ΓU sΓU =
∐

i siΓU and ΓU tΓU =
∐

j tjΓU .
We may choose a finite set Ξ ⊂ T such that

ΓU sΓU tΓU =
∐
ξ ∈Ξ

ΓUξΓU .

Then in the Hecke algebra we have the equality

[ΓU sΓU ][ΓU tΓU ] =
∑
ξ ∈Ξ

m(ξ)[ΓUξΓU ],

where m(ξ) = |{(i, j)|sitjΓU = ξΓU }|.

Lemma 7.6. With notation as in Lemma 7.5, for each ξ ∈ Ξ, we have ξ = stu(ξ) for
some u(ξ) ∈ U(Q), and

ΓUξΓU = ΓU stΓUu(ξ).

In addition,
[ΓU stΓU ][ΓUu(ξ)ΓU ] = [ΓUξΓU ],

and est = eξ .

Proof. Since T normalizes U(Q), and U(Q) is abelian, this is immediate. �

Lemma 7.7. Let u ∈ T ∩U(Q), and assume that there is some u′ ∈ ΓU that is congruent
to u modulo pN . Let M be a (p, N)-admissible T-module. Then [ΓUuΓU ] acts trivially on
the homology groups

H∗(ΓU, M).

Proof. There is only one single coset in the double coset ΓUuΓU , so the Hecke operator
[ΓUuΓU ] acts on the homology as u does.

Since u centralizes ΓU , it acts on the homology via its action on M. Since M is
(p, N)-admissible the action of u′ and the action of u on M are the same. Hence, the
action of u and the action of u′ on the homology are the same. However, u′ acts trivially
on the homology, by [14, Proposition III.8.1]. �
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Remark 7.8. We note that this lemma fails if we apply it on the chain level. This is because
the chains, C ⊗ΓU M = H0(ΓU,C ⊗Z M), although acted on by the Hecke operators, are
the homology with coefficients in C ⊗ M , which is not an admissible coefficient module.

Corollary 7.9. Let T ′ be any subgroup of T such that every element of T ′ ∩ U(Q) is
congruent modulo p to an element of ΓU . Let s, t ∈ T ′. Then, with notation as in Lemma 7.5,
we have, for z ∈ H∗(ΓU, M),

z[ΓU sΓU ][ΓU tΓU ] = z

(∑
ξ ∈Ξ

m(ξ)

)
[ΓU stΓU ].

Also,

z
1

eset
[ΓU sΓU ][ΓU tΓU ] = z

1
est
[ΓU stΓU ],

and we see that the action of individual elements of T ′ on H∗(ΓU, M) in Definition 7.2
yields a group action of T ′ given by z · s = z 1

es
[ΓU sΓU ].

Proof. The first displayed equation follows immediately from Lemmas 7.6 and 7.7. For
the second, by [24, Proposition 3.3], Lemma 7.5, and Lemma 7.6, we have

est
∑
ξ ∈Ξ

m(ξ) =
∑
ξ ∈Ξ

eξm(ξ) = deg([ΓU sΓU ][ΓU tΓU ])

= deg([ΓU sΓU ]) deg([ΓU tΓU ]) = eset .

Hence, by Lemma 7.4 and the above equation,

(z · s) · t = z
1

eset
[ΓU sΓU ][ΓU tΓU ] = z

∑
m(ξ)

eset
[ΓU stΓU ] = z

1
est
[ΓU stΓU ] = z · (st). �

Theorem7.10. Let P = Pk
d
for some d |N and some k. Let (Γ, S) be either (Γ(pN), Sk(pN))

or (Γ0(n, N), S0(n, N)). Let z ∈ H∗(ΓU, M), and let s, t ∈ SP . Then the action of individual
elements of SP on H∗(ΓU, M) in Definition 7.2 yields a semigroup action of SP under
which SU acts trivially.

Proof. By the previous lemmas, we are finished if we can show that SP lies in a subgroup
T ′ such that every element of T ′ ∩U(Q) is congruent modulo p to an element of ΓU . It
suffices to show that every element of S−1

P SP ∩U(Q) is congruent modulo p to an element
of ΓU .

For (Γ, S) = (Γ0(n, N), S0(n, N)) one checks that the intersection S−1
P SP ∩ U(Q) is

contained in the set of matrices

M =

{
g−1
d

(
Ik 0
A In−k

)
gd

}
,
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where the entries of A are rational, with denominators prime to pN , and the entries in the
top row of A have numerators divisible by N/d. The set ΓU = Γ ∩U consists of exactly
those matrices inM with integer entries. Since that any rational with denominator prime
to pN lies in Z(p), we see that it is congruent modulo p to some integer. Thus, every
element ofM is congruent modulo p to an element of ΓU .

For (Γ, S) = (Γ(pN), Sk(pN)), suppose that u ∈ S−1
P SP ∩ U(Q). Then gdug−1

d
∈

S−1
P SP ∩ U0(Q) (where we use the fact that gd normalizes Sk(pN)). Hence, gdug−1

d
≡

diag(1, . . . , 1, ∗, 1, . . . , 1, ∗) modulo pN , and has all diagonal elements equal to 1, so
gdug−1

d
≡ In (mod pN). Hence, u ≡ In (mod pN), and we are finished. �

Theorem 7.11. Let P = Pk
d
be a representative maximal parabolic subgroup of GL(n,Q)

stabilizing the subspace W = Wk
d
. Let M be a (p, N)-admissible S-module with p >

n + 1. Let (Γ, S) equal (Γ0(n, N), S0(n, N)) or (Γ(pN), Sk(pN)). Then the Hecke algebra
H(ΓP, SP) acts equivariantly on the Hochschild–Serre spectral sequence

E2
i j = Hi(ΓL,Hj(ΓU, St(W) ⊗ M)) =⇒ Hi+j(ΓP, St(W) ⊗ M),

and a given packet of Hecke eigenvalues occurs in Hk(ΓP, St(W) ⊗ M) if and only if it
appears in ⊕

i+j=k

E∞i j .

Proof. For the given congruence subgroups, SU and ΓU have the same image modulo
pN , so the proof of [7, Theorem 4.6] applies with only minor changes to account for the
factor of St(W), and with the appeal to [7, Theorem 4.4] (which requires the irreducibility
of H∗(ΓU, M)) replaced by an appeal to our Theorem 7.10, which requires that U(Q)
be abelian, which it is, since P is a maximal parabolic subgroup. Note that we need to
use the finite dimensionality of each term in the E2 page of the spectral sequence (from
Theorem 6.4) for the final statement to be true. �

We will require one other instance of the Hecke invariance of the Hochschild–Serre
spectral sequence. We refer again to ([1, p. 238]) for the definition of a Hecke pair, and
give the definition of compatible Hecke pairs from [11]. Note that since we are working
with left cosets rather than right cosets, we reverse the order of multiplication in this
definition.

Definition 7.12 ([11, Definition 1.1.2]). A Hecke pair (Γ, S) is said to be compatible to
the Hecke pair (Γ′, S′) if

(1) Γ ⊆ Γ′ and S ⊆ S′,

(2) Γ′ ∩ S−1S = Γ,
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(3) SΓ′ = S′.

If (Γ, S) is compatible to (Γ′, S′), then the natural mapH(Γ, S) → H(Γ′, S′) of Hecke
algebras is an isomorphism.

Lemma 7.13. Let P = Pk
d
for some positive d |N and some k with 1 ≤ k < n and let

(Γ, S) be a Hecke pair such that Γ(pN) ⊂ Γ, Sk(pN) ⊂ S, the elements of S have positive
determinant, and S−1S ∩ SL(n,Z) = Γ. Then the Hecke pairs (ΓP(pN), SP(pN)) and
(ΓP, SP) are compatible.

Proof. Note that Γ ⊆ S ∩ SL(n,Z) ⊆ S−1S ∩ SL(n,Z) = Γ, so Γ = S ∩ SL(n,Z).

(1) Since ΓP(pN) ⊂ ΓP and SP(pN) ⊂ SP , we have the necessary containments.

(2) We nowwish to show that ΓP∩SP(pN)−1SP(pN) = ΓP(pN). Let s1, s2 ∈ SP(pN)
and suppose that s = s−1

1 s2 ∈ ΓP . Then s has integer entries and determinant 1.
We see that det(ψi

d
(s)) = ±1 for i = 1, 2; in fact, since each det(ψi

d
(s)) > 0, each

detψi
d
(s) = 1. We also have that s ≡ diag(1, . . . , ∗, 1, . . . , ∗) (mod pN). Hence,

gdsg−1
d
≡ diag(1, . . . , ∗, 1, . . . , ∗) (mod pN) and we see that each ∗ must be 1.

Hence, s ∈ ΓP(N).

(3) Finally, let s ∈ SP . Then

gdsg−1
d =

(
s1 0
A s2

)
∈ P0.

We easily find

γ =

(
γ1 0
B γ2

)
∈ SL(n,Z) ∩ P0

such that gdsg−1
d
γ ≡ diag(1, . . . , ∗, 1, . . . , ∗) (mod pN). This matrix has posi-

tive determinant; if det(s1γ1) < 0, we multiply γ on the right by the matrix
diag(1, . . . ,−1, 1, . . . ,−1).With this adjustment,we see that s(g−1

d
γgd) ∈ SP(pN).

Then we see that g−1
d
γgd ∈ SL(n,Z) ∩ S−1Sk(pN) ⊂ SL(n,Z) ∩ S−1S = Γ and is

contained in P, so gdγg
−1
d
∈ ΓP . Hence, s ∈ SP(pN)ΓP , as desired. �

Remark 7.14. Note that (Γ0(n, N), S0(n, N)) is a Hecke pair that satisfies the conditions of
Lemma 7.13.

Theorem 7.15. Let (Γ, S) be a Hecke pair such that Γ(pN) ⊂ Γ, Sk(pN) ⊂ S, the elements
of S have positive determinant, and S−1S ∩ SL(n,Z) = Γ. Assume that p > n + 1. Let
P = Pd with d |N . Any system of Hecke eigenvalues occurring in Hk(ΓP, St(W) ⊗ M) also
appears in Hj(ΓP(pN), St(W) ⊗ M) for some j ≤ k.
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Proof. We have seen in Lemma 7.13 that the Hecke pairs (ΓP(pN), SP(pN)) and (ΓP, SP)

are compatible. The Hochschild Serre spectral sequence for the exact sequence 0 →
ΓP(pN) → ΓP → ΓP/ΓP(pN) → 0 computes Hi(ΓP, M) in two different ways (as in [14,
VII.7.6] and [7, Theorem 4.6]) by using two spectral sequences to compute the total
homology of the double complex

F• ⊗ΓP/ΓP (pN ) (C• ⊗ΓP (pN ) (St(W) ⊗ M)),

where F• is the standard resolution of Z over the finite group ΓP/ΓP(pN), and C• is the
standard resolution of Z over GL(n,Q). We let the Hecke algebra H(ΓP(pN), SP(pN))
(and hence, by compatibility, H(ΓP, SP)) act on the double complex by its natural
action on C• ⊗ΓP (pN ) (St(W) ⊗ M) (with the trivial action on F•). This action commutes
with the differentials of the double complex, and hence the spectral sequence is Hecke
equivariant. Therefore, any system of Hecke eigenvalues appearing in the abutment
Hk(ΓP, M) of the first spectral sequence must occur in the E1 page of the other, i.e., in
Fi ⊗ΓP/ΓP (pN ) Hj(ΓP(pN), St(W) ⊗ M)) for some i + j = k. This uses the fact that Fi has
finite rank over Z for each i, and the finite-dimensionality of each Hj(ΓP(pN), St(W)⊗M))
(by adapting the proof of Theorem 6.3). Since we have chosen to have the Hecke algebra act
trivially on Fi , the desired system of eigenvalues must appear in Hj(ΓP(pN), St(W) ⊗ M)
for some j ≤ k. �

8. Hecke Matrices

Throughout this section, fix a positive squarefree integer N , a positive divisor d |N , a
positive integer n, let 0 < k < n, and let P0 and gd be defined as in Section 5. Let
Γ = Γ0(n, N) and let S = S0(n, N).

We have defined s(`, r, n) = diag(1, . . . , 1, `, . . . , `) to be a diagonal n × n matrix with
diagonal entries 1 and ` and determinant `r . The Hecke algebra H(Γ, S) is generated
by the double cosets of s(`, r, n) as ` varies over primes not dividing N and 0 ≤ r ≤ n.
The following description of left coset representatives of the double coset ΓsΓ is easily
confirmed.

Theorem 8.1. Set Γ = Γ0(n, N) and S = S0(n, N). Let s = s(`, r, n) for ` - pN .

(1) In the decomposition ΓsΓ =
∐

sαΓ, we may take the sα to be the set of lower
triangular matrices (ai j) of determinant `r , where the entries ai j satisfy the
following conditions:

(a) If i < j, then ai j = 0.
(b) Each aii is either 1 or `.
(c) If i > j, then 0 ≤ ai j < `.
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(d) If aii = 1 or aj j = `, then ai j = 0.

(2) For each i < j, let Ri j ∈ Z be a complete residue system modulo ` such that
0 ∈ Ri j , and assume that every element of Ri j is divisible by N if i = 1. In
the decomposition ΓsΓ =

∐
sαΓ, we may take the sα to be the set of upper

triangular matrices (ai j) of determinant `r , where the entries ai j satisfy the
following conditions.

(a) If i > j then ai j = 0.
(b) Each aii is either 1 or `.
(c) if i < j, then ai j ∈ Ri j .
(d) If aii = 1 or aj j = `, then ai j = 0.

Remark 8.2. Typically we will take the Ri j = {0, 1, . . . , ` − 1} for i > 1, and Ri j =

{0, N, 2N, . . . , (` − 1)N} for i = 1.

Definition 8.3. Let Tn(`, r) be the set of lower triangular sα defined above, and let T n(`, r)
be the set of upper triangular sα defined above. Note that we suppress the dependence of
the set T n(`, r) on N and the possible choices of M .

Theorem 8.4. Let 0 < k < n, and let 0 ≤ r ≤ n, and let s = s(`, r, n). The following set
of matrices (given in block form) is a complete set of left coset representatives of ΓsΓ.

T(s, k) =
{(

t1 0
t2

)
: max(0, r − (n − k)) ≤ m ≤ min(r, k),

t1 ∈ T k(`,m), t2 ∈ Tn−k(`, r − m)
}

where the entries ai j in the lower left block (with i > k and j ≤ k) satisfy the following
conditions:

(1) 1 ≤ ai j ≤ `

(2) ai j = 0 if aii = 1 or aj j = `

Proof. One can count the number of matrices in the set, and it is equal to the number of
single coset representatives of s in the double coset ΓsΓ. It is a simple matter to check
that no two of the matrices in the set are in the same coset. �

Remark 8.5. Note that if we were to change the definition of T(s, k) so that t1 ∈ Tk(`,m),
then the resulting set would just be Tn(`, r).

We now prove that we can choose the coset representatives of ΓsΓ to be in Pd .
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Theorem 8.6. Let 0 < k < n, d |N , and P = Pk
d
, and let s = s(`, r, n) with ` - pN . Then

for each element t ∈ T (s, k), there is some γ ∈ Γ0(n, N) such that tγ ∈ Pd .

Proof. We distinguish five cases.

(1) Assume that the (1, 1) and the (k + 1, k + 1) entries of t are both equal to 1. Then
we may take γ = I, and we see that gdtγg−1

d
∈ P0, so that tγ ∈ Pd .

(2) Assume that the (1, 1) and the (k + 1, k + 1) entries of t are both equal to `. Then
we may take γ = I, and we see that gdtγg−1

d
∈ P0, so that tγ ∈ Pd .

(3) Assume that the (1, 1)-entry of t is ` and the (k + 1, k + 1) entry is 1. We may
choose a, b ∈ Z so that

a(d) + b(`N/d) = 1 − `

(since d and `N/d are relatively prime). Let γ be the n × n matrix which is the
identity, except for the (1, 1), (1, k + 1), (k + 1, 1) and (k + 1, k + 1) entries, which
are (respectively) 1 + bN/d, bN , a, ` + ad. Then γ ∈ Γ, and we check by direct
computation that gdtγg−1

d
∈ P0.

(4) Assume that the (1, 1)-entry of t is 1 and the (k + 1, k + 1) entry is `. Let e be the
(k + 1, 1) entry of t, and assume that ` - ed + 1. Then we may choose a and b
so that a(`d) + b ((ed + 1)N/d) = 1 − (ed + 1)` (since `d and (ed + 1)N/d are
relatively prime. Letting γ be the n × n matrix which is the identity, except for
the (1, 1), (1, k + 1), (k + 1, 1) and (k + 1, k + 1) entries, which are (respectively)
` + bN/d, bN , a, (ed + 1) + ad, we see that γ ∈ Γ, and we check by direct
computation that gdtγg−1

d
∈ P0.

(5) Assume that the (1, 1)-entry of t is 1 and the (k + 1, k + 1) entry is `. Let e be the
(k + 1, 1) entry of t, and assume that ` | ed + 1. Then we may choose a and b so
that

a(d) + b
(
(ed + 1)

`
N/d

)
= 1 −

(ed + 1)
`

(since d and (ed+1)N
`d are relatively prime). Letting γ be the n × n matrix which is

the identity, except for the (1, 1), (1, k + 1), (k + 1, 1) and (k + 1, k + 1) entries,
which are (respectively) 1 + bN/d, bN , a, (ed+1)

` + ad, we see that γ ∈ Γ, and
we check by direct computation that gdtγg−1

d
∈ P0. �

Since any single coset representative of ΓsΓ may be taken to be s, this theorem shows
that for each s = s(`, i, n), we can find an s′ ∈ SP with ΓsΓ = Γs′Γ.
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The next theorem is designed to enable us to compute the Hecke operators on a tensor
product of two Hecke modules. As such, it considers the Hecke operator Tn(`, r) to be a
sum in the free abelian group generated by single cosets. In order to facilitate the statement
of this theorem, we make the following definitions.

Definition 8.7. Let N and k be positive integers. Set Ck,N to be the set of left cosets of
Γ0(k, N) inside S0(k, N). Denote by Fk,N the free abelian group on the elements of Ck,N .
For a collection S of matrices in S0(k, N), we will write S for the element∑

s∈S

sΓ0(k, N).

Theorem 8.8. Let 0 < k < n, d |N , and P = Pd. Choose a prime ` with ` - pN , and let
s = s(`, r, n). Then in the tensor product Fk,d ⊗Z Fn−k,N/d , we have∑

t∈T(s,k)

ψ1
d(t)Γ0(k, d) ⊗ ψ2

d(t)Γ0(n − k, N/d)

=

min(r,k)∑
m=max(0,r−(n−k))

`(k−m)(r−m)Tk(`,m) ⊗ T n−k(`, r − m).

Proof. We divide the elements of Tk(`,m) into two subsets, Ak(`,m) and Bk(`,m), where
Ak(`,m) consists of elements of T k(`,m) with a 1 in the (1, 1)-position, and Bk(`,m)
consists of elements with an ` in the (1, 1)-position. Then T k(`,m) = Ak(`,m) ∪ Bk(`,m).
We also note that

T k(`,m) =
{(

1 0
0 t

)
: t ∈ T k−1(`,m)

} ⋃ {(
` r
0 t

)
: t ∈ T k−1(`,m − 1)

}
,

where the r runs through row vectors (r2, . . . , rk) with rj = 0 if the ( j − 1, j − 1) entry of t
is `, and rj ∈ R1j otherwise.

Similarly, we divide Tn−k(`,m) = An−k(`,m)
⋃

Bn−k(`,m), based on whether the
(1, 1)-entries are 1 or `. Then

An−k(`,m) =
{(

1 0
c t

)
: t ∈ Tn−k−1(`,m)

}
and

Bn−k(`,m) =
{(

` 0
0 t

)
: t ∈ Tn−k−1(`,m − 1)

}
,

where c runs through appropriate column vectors.
We now evaluate ψ1

d
(t)Γ0(k, d) × ψ2

d
(t)Γ0(n − k, N/d) for t ∈ T (r, k) in each of the

five cases in the proof of Theorem 8.6. To illustrate the method, we give details of case (1),
and just give the results of the other cases.
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(1) In this case, we have that

t =
(

t1 0
C t2

)
,

with t1 ∈ Ak(`,m) and t2 ∈ An−k(`, r − m), with max(0, r − (n − k)) ≤ m ≤
min(r, k) and the entries of C are between 0 and ` − 1 and an entry must be
equal to 0 unless it lies beneath a 1 on the diagonal and to the left of a ` on the
diagonal. For each choice of t1, t2, there are `(k−m)(r−m) distinct C that can occur.
Multiplying by γ = In and conjugating by gd fixes t, so we have

ψ1
d(t)Γ0(k, d) ⊗ ψ2

d(t)Γ0(n − k, N/d) = t1Γ0(n − k, N/d) ⊗ t2Γ0(n − k, N/d),

and each element of Ak(`,m)× An−k(`, r − m) appears `(k−m)(r−m) times. In other
words, as we allow m to vary, and go through all t ∈ T (r, k) that fall into case (1),
we obtain

min(r,k−1)∑
m=max(0,r−(n−k))

`(k−m)(r−m)Ak(`,m) ⊗ An−k(`, r − m).

(2) As t runs through all elements of T(r, k) that fall into case (2), we obtain

min(k,r)∑
m=max(0,r−(n−k))

`(k−m)(r−m)Bk(`,m) ⊗ Bn−k(`, r − m).

(3) As t runs through all elements of T(r, k) that fall into case (3), we obtain

min(k,r)∑
m=max(0,r−(n−k))

`(k−m)(r−m)−1 Ak(`,m) ⊗ Bn−k(`, r − m).

(4) As t runs through all elements of T(r, k) that fall into case (4), we obtain

min(k,r)∑
m=max(0,r−(n−k))

(`(k−m)(r−m) − `(k−m)(r−m)−1)Ak(`,m) ⊗ Bn−k(`, r − m).

(5) As t runs through all elements of T(r, k) that fall into case (5), we obtain

min(k,r)∑
m=max(0,r−(n−k))

`(k−m)(r−m)Bk(`,m) ⊗ An−k(r − m).
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Then cases (1), (3), and (4) add to
min(r,k)∑

max(0,r−(n−k))
`(k−m)(r−m)Ak(`,m) ⊗ Tn−k(`, r − m),

and cases (2) and (5) add to
min(r,k)∑

max(0,r−(n−k))
`(k−m)(r−m)Bk(`,m) ⊗ Tn−k(`, r − m).

Adding these, we obtain
min(r,k)∑

max(0,r−(n−k))
`(k−m)(r−m)T k(`,m) ⊗ Tn−k(`, r − m),

which is the desired result. �

9. Twisting the action on the coefficients

Let M be a right GL(n, Fp)-module, let N be a positive integer prime to p, and let d
be a positive divisor of N . Let ε : (Z/NZ)× → F× be a character. Let S = S0(n, N)
act on M via reduction modulo p. Then M is an admissible Fp[S0(n, N)]-module. Let
θ : S → (Z/NZ)× take s ∈ S to the mod N reduction of its (1, 1) entry. As before, we
define the nebentype character S → F× as the composition ε ◦ θ. We will write ε(s) for
this composition. Let Mε be the module consisting of the elements of M , with the action
of S adjusted to equal

m|ε s = ε(s)ms.

Let P0 = Pk
0 be a standard maximal parabolic subgroup defined as in Section 5. As in

that section, let P = Pd = g−1
d

P0gd. Let SP = S ∩ P. We denote by Md
ε the SP-module

on which an element of SP acts as

m|dε s = ε(s)m · (gdsg−1
d ).

When using this notation, if d = 0 we omit it; similarly if ε = 1 we omit it. As in [5,
Section 5], we note that if M = F(a1, . . . , an), then Md is isomorphic to F(a1, . . . , an),
with gd acting as an intertwining operator.

Let Γ = Γ0(n, N), let U = Ud be the unipotent radical of Pd, L = P/U, and let
ΓU = Γ ∩U, SU = S ∩U, and SL = SP/SU . We note that U(Z) is free abelian of rank
k(n − k); ΓU is a subgroup of U(Z) of finite index prime to p.

We now prove a special case of a version of Kostant’s theorem in characteristic p in
the top dimension.
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Theorem 9.1. Let N be squarefree and prime to p, let ε : (Z/NZ)× → F× be a character,
let d |N and let 1 ≤ k ≤ n − 1. Let P = Pk

d
and let U = Ud be the unipotent radical of P.

Set (Γ, S) = (Γ0(n, N), S0(n, N)). Let r = k(n − k) be the Q-dimension of U. Then

Hr (ΓU, F(a1, . . . , an)ε ) � (F(a1 + (n− k), . . . , ak + (n− k)) ⊗ F(ak+1 − k, . . . , an − k))dε

as SL-modules.

Proof. Set M = F(a1, . . . , an). Since ε is trivial on ΓU , we see that as an SP-module,
Hr (ΓU, Mε ) = Hr (ΓU, M)ε .Wenote (as in [14, p. 79]) thatHr (ΓU, M) � Hr (gdΓUg

−1
d
, M)

as abelian groups, with the isomorphism defined on the chain level by taking a reso-
lution X of Z as a GL(n,Q)-module, and mapping X ⊗ΓU M → X ⊗gdΓUg−1

d
M by

x ⊗ m 7→ xg−1
d
⊗ mg−1

d
. Under this isomorphism, the action of s ∈ SP on the left hand

side converts to an action of gdsg−1
d

on the right hand side; hence, when we consider the
homology groups as SP-modules, we see that Hr (ΓU, Mε ) � Hr (gdΓUg

−1
d
, M)dε .

Since gdΓUg−1
d
� ΓU is free abelian of rank r , we may view Hr (gdΓUg

−1
d
, M) as the

homology of a real r-torus with fundamental group gdΓUg−1
d

with local coefficient system
determined by M. Taking f to be the fundamental class of the n-torus, we can identify
elements in Hr (gdΓUg

−1
d
, M) with elements of the form f ⊗ m, where m ∈ MgdΓUg−1

d .
Now as L(Z/pZ)-modules, we have

MgdΓUg−1
d � (Md)ΓU � MΓU = MU(Z/pZ) � (F(a1, . . . , ak) ⊗ F(ak+1, . . . , an)),

where we use the fact that M � Md with gd as an intertwining operator, that the mod p
reduction of ΓU isU(Z/pZ), and [17, Corollary 5.10]. Using Definition 7.2 to compute the
action of SP , we note that the highest weight vector in Hr (ΓU, F(a1, . . . , an)) is the highest
weight vector in F(a1, . . . , an)U(Z/pZ). The weight of this vector is the weight (a1, . . . , an)
twisted by a certain character on the diagonal matrices in gdSPg

−1
d
. The key point to

determine this twist is the following. The action on the fundamental class is determined
by the conjugation action of t = diag(t1, . . . , tn) ∈ gdSPg

−1
d

on η ∈
∧k(n−k)U(Z) induced

by the action (t, η) 7→ t−1ηt and this is given by the character

diag(t1, . . . , tn) 7→
tn−k1 . . . tn−k

k

tk
k+1 . . . t

k
n

. �

Corollary 9.2. With notation as above, we may uniquely factor ε into a product of a
character ε1 modulo d and ε2 modulo N/d. Then an element s ∈ SP acts on a simple
tensor

m1 ⊗ m2 ∈ (F(a1 + (n − k), . . . , ak + (n − k)) ⊗ F(ak+1 − k, . . . , an − k))dε

by
(m1 ⊗ m2)|

d
ε s = ε1(ψ

1
d(s))m1ψ

1
d(s) ⊗ ε2(ψ

2
d(s))m2ψ

2
d(s).
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Proof. By Theorem 5.2(1), ψ1
d
(s)11 ≡ s11 (mod d) and ψ2

d
(s)11 ≡ s11 (mod N/d), so

ε1(ψ
1
d
(s))ε2(ψ

2
d
(s)) = ε(s). In addition, we have

gdsg−1
d =

(
ψ1
d
(s) 0

∗ ψ2
d
(s)

)
,

with the upper left block acting on the first component of m1 ⊗ m2, and the lower right
block acting on the second component. The corollary follows. �

10. Hecke operators and the Künneth formula

For i = 1, 2, let Gi be a group, and let Mi be an F[Gi]-module. Let Fi be a resolution of Z
by projective ZGi-modules. Then [14, p. 109], we have an isomorphism of complexes of
F-vector spaces

(F1 ⊗G1 M1) ⊗F (F2 ⊗G2 M2) � (F1 ⊗ F2) ⊗G×G′ (M1 ⊗ M2),

given by ( f1 ⊗ m1) ⊗ ( f2 ⊗ m2) 7→ ( f1 ⊗ f2) ⊗ (m1 ⊗ m2). Applying the Künneth formula
to this isomorphism of complexes, we obtain an isomorphism (since we are working with
modules over a field)⊕

r+s=n

Hr (G1, M1) ⊗F Hs(G2, M2) → Hn(G1 × G2, M1 ⊗ M2).

We will apply the Künneth isomorphism to the case of congruence subgroups, and
study how it interacts with the action of Hecke operators.

Set P = Pk
d
= g−1

d
P0gd, and denote by U = Ud the unipotent radical of P, and by

L = Ld the Levi quotient P/U. The exact sequence 1→ U0 → P0 → P0/U0 → 1 splits,
giving us that P0/U0 is isomorphic to a subgroup L1

0 × L2
0 of P. In this case, L1

0 consists
of block diagonal matrices A ⊕ In−k , and L2

0 consists of block diagonal matrices Ik ⊕ B.
Then Ld = Pd/Ud is isomorphic to the subgroup L1

d
× L2

d
of Pd , with Li

d
= g−1

d
Li

0gd .
Let Γ = Γ0(n, N), S = S0(n, N), Γ± = Γ±0 (n, N), and S± = S±0 (n, N). We note that the

Hecke algebrasH(Γ, S) andH(Γ±, S±) are easily seen to be isomorphic, as areH(ΓP, SP)

andH(Γ±P, S
±
P).

By Theorem 5.2, we see that Γ±L = Γ
±
P/Γ

±
U = Γ

±

L1 × Γ
±

L2 , where

Γ
±

L1 = (ψ
1
d × ψ

2
d)
−1(Γ±0 (k, d) × In−k)/Γ±U � Γ±0 (k, d)

and

Γ
±

L2 = (ψ
1
d × ψ

2
d)
−1(Ik × Γ±0 (n − k, N/d))/Γ±U � Γ±0 (n − k, N/d).
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Hence, by the Künneth isomorphism, if M = M1 ⊗ M2, where Mi is an Li-module, we
have

Hk(Γ
±
L, St(Wd) ⊗ M) �

⊕
i+j=k

Hi(Γ
±

L1, St(Wd) ⊗ M1) ⊗ Hj(Γ
±

L2, M2)

�
⊕
i+j=k

Hi(Γ
±
0 (k, d), St(W0) ⊗ Md

1 ) ⊗ Hj(Γ
±
0 (n − k, N/d), Md

2 )

after conjugating by gd .
Let Fi be the standard resolution of Z by Li(Q)-modules. Then we may compute

Hk(Γ
±
L, St(Wd) ⊗ M) as the homology of the complex

(F1 ⊗Γ±
L1

St(W) ⊗ M1) ⊗ (F2 ⊗Γ±
L2

M2) � (F1 ⊗ F2) ⊗Γ±L (St(W) ⊗ M),

Since U acts trivially on F1 ⊗ F2 and on St(W) ⊗ M, we have that the Hecke algebra
H(ΓP, SP) acts on the right hand complex, and therefore on the homology Hk(Γ

±
L, St(Wd)⊗

M). Translating this action to the left-hand complex, and applying Theorem 8.8, we obtain
the following theorem.

Theorem 10.1. Let (Γ, S) = (Γ0(n, N), S0(n, N)), and let Pk
d
be a representative maximal

parabolic subgroup of GL(n,Q) for some d |N . Let M1 be a GL(k, Fp)-module and let M2
be a GL(n− k, Fp)-module. Let SP act on M1 ⊗M2 via (m1 ⊗m2)s = m1ψ

1
d
(s) ⊗m2ψ

2
d
(s).

Then the natural action of Tn(`, r) ∈ H(ΓP, SP) on

Ht (Γ
±
L, St(Wd) ⊗ M1 ⊗ M2)

is given on the component

Hr (Γ
±
0 (k, d), St(W0) ⊗ M1) ⊗ Ht−r (Γ

±
0 (n − k, N/d), M2)

by

( f ⊗ g)|Tn(`, r) =
min(r,k)∑

m=max(0,r−(n−k))
`(k−m)(r−m) f |Tk(`,m) ⊗ g |Tn−k(`, r − m).

The same holds true if St(Wd) and St(W) are removed from the formulas.

In terms of Hecke eigenvectors, we obtain the following two corollaries.

Corollary 10.2. Let P = Pk
d
be a representative maximal parabolic subgroup of GL(n,Q)

of type (k1, k2) = (k, n − k) with unipotent radical U and Levi quotient L, and denote
the two components of the Levi quotient by L1 and L2. Let Mi be an Li-module, and
M = M1 ⊗ M2. For i = 1, 2, let fi ∈ Hpi (Γ

±

Li , Mi) be an eigenclass of all the Hecke
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operators Tki (`, j), with eigenvalues ai(`, j). Then f1 ⊗ f2, considered as an element of
Hp1+p2 (Γ

±
L, M), is an eigenclass of the Hecke operators Tn(`, r), with eigenvalues

c(`, r) =
min(k1,r)∑

m=max(0,r−(n−k1))

`(k1−m)(r−m)a1(`,m)a2(`, r − m).

If each fi is attached to a Galois representation ρi , then f1 ⊗ f2 is attached to ρ1 ⊕ ω
k1 ρ2.

Proof. The values of the c(`, r) follow immediately from Theorem 10.1. To see the
statement about attachment, we let

Pi(X, `) =
ki∑
j=0
(−1)j` j(j+1)/2ai(`, j)X j

be the Hecke polynomial associated with fi . We recall that attachment implies that

Pi(X, `) = det(I − ρi(Fr`)X).

We note that
P1(X, `)P2(`

k1 X, `) = det(I − (ρ1 ⊕ ω
k1 ρ2)(Fr`)X).

Hence, in order to complete the proof, we need only show that the Hecke polynomial

P(X, `) =
n∑
i=0
(−1)i`i(i+1)/2c(`, i)X i

is equal to P1(X, `)P2(X, `). This is a routine algebraic computation. �

Corollary 10.3. Assume that p > n + 1. Any system of simultaneous eigenvalues of the
Tn(`,m) acting on

Hr (Γ
±
0 (k, d), St(W0) ⊗ M1) ⊗ Hs(Γ

±
0 (n − k, N/d), M2)

arises as a tensor product of a simultaneous eigenvector of theTk(`,m) and a simultaneous
eigenvector of the Tn−k(`,m).

Hence, any system of simultaneous eigenvalues of the Tn(`,m) acting on

Hr+s(Γ
±
L, St(Wd) ⊗ (M1 ⊗ M2)

d)

appears as such a tensor product.

Proof. We can find a basis {vr } of Hi(Γ
±
0 (k, d), St(W) ⊗ M1) such that the actions of the

Tk(`,m) are all upper triangular, and a basis {ws} of Hj(Γ
±
0 (n− k, N/d), M2) with respect

to which the Tn−k(`,m) are all upper triangular. Then, by Theorem 10.1 and the Kronecker
product, there is a basis {vr ⊗ ws} with respect to which all of the Tn(`,m) are upper
triangular. We can then read off the systems of simultaneous eigenvalues of the Tn(`,m)

237



Avner Ash & Darrin Doud

from the diagonal elements of the matrix, and we see that they all arise from elements of
the form v ⊗ w. �

The purpose of Theorem 10.1 is to construct eigenvectors of the Hecke algebra with
predetermined eigenvalues in the homology of ΓL . With this in mind, we now relate the
homology of Γ±L to the homology of ΓL .

Theorem 10.4. Let M be an S±-module on which S±U acts trivially, and assume that
p > n+1. Then any systemΦ ofH(ΓP, SP)-eigenvalues appearing in Hk(Γ

±
L, St(Wd)⊗M)

appears in Hk(ΓL, St(Wd) ⊗ M).

Proof. Because p > n + 1, we may use Borel–Serre duality. An argument similar to that
in Theorem 6.3 shows that Hk(ΓL, St(Wd) ⊗ M) is finite dimensional.

As noted previously, the Hecke algebras H(ΓP, SP) and H(Γ±P, S
±
P) are isomorphic.

Hence, H(ΓP, SP) acts on both Hk(ΓL, St(Wd) ⊗ M) and on Hk(Γ
±
L, St(Wd) ⊗ M). The

corestriction map cores : Hk(ΓL, St(Wd) ⊗ M) → Hk(Γ
±
L, St(Wd) ⊗ M) is easily seen

to be an H(ΓP, SP) homomorphism. By the adaptation of [14, Proposition III.10.4] to
homology, the corestriction factors as a composite

Hk(ΓL, St(Wd) ⊗ M) → Hk(ΓL, St(Wd) ⊗ M)Γ±L/ΓL → Hk(Γ
±
L, St(Wd) ⊗ M),

where the first map is surjective, and the second is an isomorphism. Since the corestriction
map is Hecke equivariant and surjective, any system Φ of eigenvalues in the codomain
must appear in the domain. �

We now prove a similar theorem for principal congruence subgroups. Since conjugation
by gd preserves Γ(N), we see easily that ΓL(N) = ΓL1 (N) × ΓL2 (N) (since for instance,
if γ ∈ GL(k,Z) is congruent to the identity, then g−1

d
(γ ⊕ In−k)gd ∈ ΓP(N)). Hence, we

may decompose

Hk(ΓL(N), St(W) ⊗ M1 ⊗ M2) �
⊕
i+j=k

Hi(ΓL1 (N), St(W) ⊗ M1) ⊗ Hj(ΓL2 (N), M2).

Since (ΓP(N), SP(N)) and (ΓP, SP) are compatible Hecke pairs, H(ΓP, SP) acts on the
above module, and we obtain the following theorem.

Theorem 10.5. Let Φ be a system of Hecke eigenvalues of all the Tn(`, r) acting on
Ht (ΓL(N), St(W) ⊗M1 ⊗M2). Assume that p > n+ 1. Then there is an eigenvector f with
eigenvalue system Φ that can be written as f = f1 ⊗ f2 with f1 ∈ Hi(ΓL1 (N), St(W) ⊗M1)

and f2 ∈ Hj(ΓL2 (N), M2) each a simultaneous eigenvector of the appropriate Hecke
algebra, with i + j = t. If f1 and f2 have attached Galois representations ρ1 and ρ2, then
f1 ⊗ f2 has attached Galois representation ρ1 ⊕ ω

k ρ2.
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Proof. Since (ΓP(pN), SP(pN)) and (ΓP, SP) are compatible, for s = s(`, r, n) ∈ SP , we
may choose γ ∈ ΓP and γα ∈ ΓP such that

ΓPsΓP = ΓpsγΓP =
∐

sα ∈T(s,k)

sαΓP =
∐

sα ∈T(s,k)

sαγαΓP

and sγ and each sαγα ∈ SP(pN). Then, by compatibility, we have

ΓP(pN)sγΓP(pN) =
∐

sαγαΓP(pN).

We note that ψ1
d
(sαγα) = ψ1

d
(sα)ψ1

d
(γα) and that ψ1

d
(γα) ∈ Γ

±
0 (k, d). If necessary, we

may multiply γα by diag(1, . . . ,−1, 1, . . . ,−1) ∈ ΓP so that ψ1
d
(γα) ∈ Γ0(k, d). Hence,

the Γ0(k, d)-coset ψ1
d
(sα) is the same as the coset of ψ1

d
(sαγα). Using these facts, and the

fact that (Γ0(d, k), S0(d, k)) is compatible with the principal congruence Hecke pair of
level pN for GL(k) (and analogous facts for ψ2

d
), we see that∑

sα ∈T(s,k)

ψ1
d
(sα) ⊗ ψ2

d
(sα) =

∑
sα ∈T(s,k)

ψ1
d
(sαγα) ⊗ ψ2

d
(sαγα)

=
∑

sα ∈T(s,k)

�ψ1
d
(sαγα) ⊗ �ψ2

d
(sαγα)

=

min(r,k)∑
m=max(0,r−(n−k)

`k−m �T ′
k
(`,m) ⊗ �T ′

n−k
(`, r − m),

where T ′
k
(`,m) is a collection of left coset representatives that compute Tk(`,m) for

the principal congruence Hecke pair, and the tildes represent cosets for the appropriate
principal congruence subgroup. The theorem then follows exactly as in Theorem 10.1,
Corollary 10.2, and Corollary 10.3. �

11. Reducibility of Galois representations attached to homology of a para-
bolic subgroup

Throughout this section, we will let P be a maximal parabolic subgroup of GL(n,Q), with
unipotent radical U and Levi subgroup L. We will also assume that (Γ, S) is a congruence
Hecke pair such that ΓU and SU have the same reduction modulo p.

Lemma 11.1. Let A be a free abelian group of finite rank r , Let P be a maximal parabolic
subgroup of GL(n,Q) with unipotent radical U, and suppose that L(Z) = P(Z)/U(Z)
acts on A. Assume that there is an isomorphism ϕ : A → Zr and a representation
M : P(Z) → GL(r,Z) that factors through U(Z) such that

ϕ(aλ) = ϕ(a)M(λ)
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for every a ∈ A and λ ∈ P(Z). Then P(Z) acts on

Hk(A, F) �
∧k
(A ⊗ F)

via
∧k(M).

Proof. This follows immediately from the naturality of the isomorphism in [14, V.6.4
and the preceding page]. �

Lemma 11.2. Let P be a maximal parabolic subgroup of GL(n,Q), and let s ∈ SP . The
action of the Hecke operator [ΓU sΓU ] on H1(ΓU,Z) � ΓU described by Definition 7.2 is
given on an element u ∈ ΓU by

u[ΓU sΓu] = s−1(ues )s.

Proof. Let H = ΓU ∩ sΓU s−1 be the largest subgroup of ΓU such that s−1Hs ⊆ ΓU . We
have previously denoted [ΓU : H] by es, and noted that it is prime to p. The Hecke
operator [ΓU sΓU ] is given by the composition

ΓU
transfer
−→ H

α
−→ s−1Hs

ι
−→ ΓU,

where the first map is the group-theoretic transfer, the second is conjugation by s, and the
third is inclusion. By [21, Theorem 10.1.3], the transfer from ΓU to H is just the es-power
map. Hence,

u[ΓU sΓU ] = s−1(ues )s,

where ues ∈ H, since [ΓU : H] = es . �

For ease of notation, we will now consider ΓU as a free abelian group written
additively, and call it A. As above, we obtain an action of the Hecke algebra of ΓU on
H1(ΓU, F) = H1(ΓU,Z) ⊗ F � A ⊗ F; namely [ΓU sΓU ] acts on an element a ⊗ 1 ∈ A ⊗ F
by taking it to

(s−1(esa)s) ⊗ 1.
Note that on the free abelian group esA ⊂ A, conjugation by s is given (in terms of a
basis of A) by a matrix M(S) ∈ GL(n,Q), all of whose denominators divide es (and are
hence in Z(p)). This is the same matrix that describes the action of s (in terms of a Z-basis
of A = ΓU ) on U(Q). Using the Pontryagin product (as in Lemma 11.1) to extend this
action from H1(ΓU, F) to Hk(ΓU, F) and invoking the last statement in Corollary 7.9, we
obtain the following theorem.

Theorem 11.3. Let M : SP → GL(n,Z(p)) be the matrix that describes the action of SP

on U(Q) in terms of a Z-basis of ΓU . Then the action of s ∈ SP on Hk(ΓU, F) is given by
the mod p reduction of

∧k M . In particular, Hk(ΓU, F) is an admissible SP-module.
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We will apply this theorem in the following special case.

Corollary 11.4. For a maximal parabolic subgroup P of GL(n,Q), with Levi subgroup L
and unipotent radical U, the homology Hk(ΓU (pN), F) is an admissible SP(pN)-module
on which ΓP(pN) acts trivially.

If we denote reduction modulo pN by a bar, then the map D : SP(pN) → (Z/pNZ)× ×
(Z/pNZ)× given by D(s) = (det(ψ1

d
(s)), det(ψ2

d
(s)) is a homomorphism with kernel equal

to ΓP(pN). Hence, on any module M on which SP(pN) acts via reduction modulo
p, SP(pN) acts through the image of D, which is an abelian group. Hence, it acts on
any irreducible constituent of M via a character that factors through D. It follows that
any irreducible constituent of M is of the form Fχ, where χ is a character that factors
through D.

Theorem 11.5. Let P be a maximal Q-parabolic subgroup of GL(n,Q) with unipotent
radical U and Levi quotient L = P/U and let (Γ, S) = (Γ0(n, N), S0(n, N)). Let W be the
maximal proper P-stable subspace of Qn and let k = dim(W). Set n1 = k and n2 = n − k.
Assume that p > n+ 1. Let M be an irreducible (p, N)-admissible F[S]-module, and let Φ
be a system ofH(Γ, S)-eigenvalues occurring in Ht (ΓP, St(W) ⊗ M). Then there is some
reducible Galois representation ρ = σ1 ⊕ σ2 with σi : GQ → GL(ni, F) that is attached
to Φ.

Proof. We note that there is some γ ∈ Γ0(n, N) such that γPγ−1 = Pd = Pk
d
for some

d |N . Conjugation by γ then yields an isomorphism ofH(Γ, S)-modules

Ht (ΓP, St(W) ⊗ M) � Ht (ΓPd
, St(W) ⊗ M),

so that we may, without loss of generality, assume that P = Pd and W = Wd for some
d |N .

Now, by Theorem 7.15, we may assume that Φ appears in

Ht (ΓP(pN), St(W) ⊗ M).

Given an exact sequence 0 → M1 → M2 → M3 → 0 of SP-modules, since
St(W) ⊗ Mi = (St(W) ⊗ F) ⊗F Mi and St(W) ⊗ F is a free (hence flat) F-module, we see
that

0→ St(W) ⊗ M1 → St(W) ⊗ M2 → St(W) ⊗ M2 → 0
is again an exact sequence of SP-modules. Then (see [11, Lemma 2.1]) Φ must appear in

Ht (ΓP(pN), St(W) ⊗ M ′),

where M ′ is some irreducible constituent of M as an SP(pN)-module. Now, SP(pN) acts
on M ′ via D composed with some character χ on (Z/NZ)× × (Z/NZ)×, so M ′ must be
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isomorphic to Fχ, and we see that Φ must actually appear in

Ht (ΓP(pN), St(W) ⊗ Fχ).

Note that we may write χ as a product of two characters χ1, χ2 on (Z/NZ)×, where
χ ◦ D = (χ1 ◦ det ◦ψ1

d
) · (χ2 ◦ det ◦ψ2

d
). We see easily that Fχ = Fχ1 ⊗ Fχ2 .

By Theorem 7.11, we see that the Hochschild–Serre spectral sequence for 1 →
ΓU (pN) → ΓP(pN) → ΓL(pN) → 1 is Hecke equivariant, so Φ appears in some term

Hi(ΓL(pN),Hj(ΓU (pN), St(W) ⊗ Fχ)) � Hi(ΓL(pN), St(W) ⊗ Hj(ΓU (pN), Fχ)).

Now, by Corollary 11.4, we see that Hj(ΓU (pN), Fχ) � Hj(ΓU (pN), F) ⊗ Fχ is (p, N)-
admissible, and hence is acted on trivially by ΓP(pN). Using the fact that ΓL(pN) �
ΓL1 (pN)×ΓL2 (pN), where ΓL1 (pN) is isomorphic to the principal congruence subgroup of
GL(k,Z), and ΓL2 (pN) is isomorphic to the principal congruence subgroup ofGL(n−k,Z),
and ΓL2 (pN) acts trivially on St(W), we see that Φ must appear in

Hi(ΓL(pN), St(W) ⊗ Fχ)) � Hi(ΓL1 (pN) × ΓL2 (pN), St(W) ⊗ Fχ))

�
⊕
r+s=i

Hr (ΓL1 (pN), St(W) ⊗ Fχ1 ) ⊗ Hs(ΓL2 (pN), Fχ2 )

�
⊕
r+s=i

Hr′(ΓL1 (pN), Fχ1 ) ⊗ Hs(ΓL2 (pN), Fχ2 ),

where r ′ = k(k − 1)/2 − r (using Borel–Serre duality).
By Theorem 10.5, we see that the system of eigenvalues Φ must have an eigenvector

f1 ⊗ f2, where
f1 ∈ Hr′(ΓL1 (pN), Fχ1 )

and
f2 ∈ Hs(ΓL2 (pN), Fχ2 )

are eigenvectors for the appropriate Hecke algebras.
Now [22] shows (conditional on the stabilization of a twisted trace formula; see [22,

p. 949]) that each of fi has an attached Galois representation σi : GQ → GL(ni, Fp).
Then by Theorem 10.5, we see that Φ has attached Galois representation ρ = σ1 ⊗ ω

kσ2,
as desired. �

12. Application to GL(4) and reducible Galois representations

We now apply the theory that we have developed to the case of a Galois representation
ρ = ρ1 ⊕ ρ2, where ρ1 and ρ2 are odd irreducible two-dimensional Galois representations,
ρi : GQ → GL(2, F) such that the levels Ni of ρi are squarefree and relatively prime
and p > 5. Denote by εi the nebentype of ρi . Let ρ1 have Serre weight F(a + 2, b + 2),
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and let ρ2 have Serre weight F(c, d). Note that we may adjust b modulo p − 1 so that
0 ≤ b−c ≤ p−1. One then easily checks that a predicted weight for ρ1⊕ ρ2 is F(a, b, c, d).

Now, we know (since Serre’s conjecture is a theorem) that ρ1 is attached to some
Hecke eigenvector f ∈ H1(Γ±0 (2, N1), F(a + 2, b + 2)ε1 ) and (twisting by a character) that
ω−2 ⊗ ρ2 is attached to some Hecke eigenvector

g ∈ H1(Γ
±
0 (2, N2), F(c − 2, d − 2)ε2 ).

By Borel–Serre duality ρ1 is attached to some eigenvector

f ′ ∈ H0(Γ
±
0 (2, N1), St(W) ⊗ F(a + 2, b + 2)ε1 ),

whereW = Q2 is acted on in the natural way by Γ±0 (2, N1), S±0 (2, N1) ⊂ GL(2,Q). Hence, by
Corollary 10.2 and Theorem 10.4, we see that ρ1 ⊕ ρ2 is attached to a Hecke eigenvector in

H1(ΓLN1
, St(WN1 ) ⊗ (F(a + 2, b + 2) ⊗ F(c − 2, d − 2))N1

ε1ε2 ),

where WN1 is the space stabilized by P2
N1
∈ GL(4,Q).

Let ε be the character modulo N1N2 defined by ε = ε1ε2.
Now, since UN1 acts trivially on St(WN1 ), we know by Theorem 9.1 that

H4(ΓUN1
, St(WN1 ) ⊗ F(a, b, c, d)ε ) � St(WN1 ) ⊗ (F(a + 2, b + 2) ⊗ F(c − 2, d − 2))N1

ε .

Hence, we see that ρ1 ⊕ ρ2 is attached to a Hecke eigenvector in

H1(ΓLN1
,H4(ΓUN1

, St(WN1 ) ⊗ F(a, b, c, d)ε )).

This is the E2
14 term in the Hochschild–Serre spectral sequence for the exact sequence

1 → ΓUN1
→ ΓPN1

→ ΓLN1
→ 1. Since the p-homological dimension of ΓLN1

is two,
this spectral sequence is only three columns wide; since E2

14 is in the center column,
everything in it survives to the infinity page. Hence, ρ1 ⊕ ρ2 is attached to a Hecke
eigenvector in H5(Γ0(n, N1N2) ∩ PN1, St(WN1 ) ⊗ F(a, b, c, d)ε ).

Hence, ρ1⊕ ρ2 is attached to a Hecke eigenclass in the term E1
15 of the spectral sequence

of Section 6. This class cannot be killed off by elements in E1
25 or E

1
05, since any system

of Hecke eigenvalues in those terms must be attached to a Galois representation that has
a character as a direct summand by Theorem 11.5 (the semi-simplification of a Galois
representation attached to a system of Hecke polynomials is unique up to isomorphism by
the Cebotarev Density Theorem, the fact that the Frobenius elements generate the Galois
group, and Brauer–Nesbitt Theorem). The only other way that the class could be killed off
would be by an eigenclass in E2

3,4, in which case there must be a class in E1
34 with ρ1 ⊕ ρ2

attached. Hence, we see that either ρ1 ⊕ ρ2 fits H6(Γ0(N1N2), F(a, b, c, d)) or it fits

E1
34 = H4(Γ0(V), St(V) ⊗ F(a, b, c, d)) � H2(Γ0(N1N2), F(a, b, c, d)).
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Since a Galois representation fits Ht (Γ, M) if and only if it fits Ht (Γ, M) [7, Lemma 2.4],
we see that we have proved the following.

Theorem 12.1. Let p > 5. For i = 1, 2, let ρi : GQ → GL(2, F) be an odd irreducible
Galois representation with level Ni and nebentype εi , and let ε = ε1ε2. Then ρ1 ⊕ ρ2
is attached to a Hecke eigenclass in either H6(Γ0(N1N2), Mε ) or in H2(Γ0(N1N2), Mε ),
where M is a weight for ρ1 ⊕ ρ2 predicted by the conjecture in [8].

Remark 12.2. We think it very unlikely that ρ1 ⊕ ρ2 fits H2(Γ0(N1N2), Mε ), but we know
of no theorems that would prove that it can not.

We hope in a future paper to be able to extend this theorem to representations
ρ = ρ1 ⊕ ρ2 where ρ is an odd Galois representation that is a sum of two odd irreducible
n-dimensional Galois representations for arbitrarily large n, assuming that each constituent
is attached to an appropriate homology Hecke eigenclass. Such an extension will require
a better understanding of the terms of the Hochschild–Serre spectral sequence for the
exact sequence 0→ ΓU → ΓP → ΓL → 0, which degenerates in the case n = 2.
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