Soit une fonction de type positif normalisée sur un groupe localement compact abélien , et la représentation unitaire de obtenue par construction GNS. Nous donnons des conditions nécessaires et suffisantes pour l’annulation de la 1-cohomologie et de la 1-cohomologie réduite . Par exemple, si et seulement si ou bien ou bien , où est le caractère trivial de et est la mesure de probabilité sur le dual de Pontryagin associée à par le théorème de Bochner. Cela simplifie un argument de Guichardet (Théorème 4 de [7]).
For a normalized positive definite function on a locally compact abelian group , let be the unitary representation associated to by the GNS construction. We give necessary and sufficient conditions for the vanishing of 1-cohomology and reduced 1-cohomology . For example, if and only if either or , where is the trivial character of and is the probability measure on the Pontryagin dual associated to by Bochner’s Theorem. This streamlines an argument of Guichardet (see Theorem 4 in [7]).
Classification : 43A35
Mots clés : continuous 1-cohomology, cyclic representation, GNS construction, locally compact abelian group, positive definite function
@article{AMBP_2014__21_1_61_0, author = {Franks, Jordan and Valette, Alain}, title = {On $1$-cocycles induced by a positive definite function on a locally compact abelian group}, journal = {Annales Math\'ematiques Blaise Pascal}, pages = {61--69}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {21}, number = {1}, year = {2014}, doi = {10.5802/ambp.335}, mrnumber = {3248221}, zbl = {1297.43007}, language = {en}, url = {www.numdam.org/item/AMBP_2014__21_1_61_0/} }
Franks, Jordan; Valette, Alain. On $1$-cocycles induced by a positive definite function on a locally compact abelian group. Annales Mathématiques Blaise Pascal, Tome 21 (2014) no. 1, pp. 61-69. doi : 10.5802/ambp.335. http://www.numdam.org/item/AMBP_2014__21_1_61_0/
[1] Kazhdan’s property (T), Cambridge University Press, 2008 | MR 2415834 | Zbl 1146.22009
[2] Group cohomology, harmonic functions and the first -Betti number, Potential Analysis, Volume 6 (1997), pp. 313-326 | Article | MR 1452785 | Zbl 0882.22013
[3] Isometric group actions on Banach space and representations vanishing at infinity, Transform. Groups, Volume 13 (2008), pp. 125-147 | Article | MR 2421319 | Zbl 1149.22006
[4] Les -algbres et leurs reprsentations, Gauthier-Villars, 1969 | Zbl 0174.18601
[5] A course in abstract harmonic analysis, CRC Press, 1995 | MR 1397028 | Zbl 0857.43001
[6] Sur la cohomologie des groupes topologiques, Bull. Sc. Math, Volume 95 (1971), pp. 161-176 | MR 307265 | Zbl 0218.57030
[7] Sur la cohomologie des groupes topologiques II, Bull. Sc. Math., Volume 96 (1972), pp. 305-332 | MR 340464 | Zbl 0243.57024
[8] Cohomologie des groupes topologiques et des algbres de Lie, CEDIC, 1980 | MR 644979 | Zbl 0464.22001
[9] Fourier analysis on groups, John Wiley and Sons, 1962 | MR 152834 | Zbl 0698.43001
[10] Rigidity of commensurators and irreducible lattices, Invent. Math., Volume 141 (2000), pp. 1-54 | Article | MR 1767270 | Zbl 0978.22010