Modélisation numérique pour l'océanographie physique
Annales mathématiques Blaise Pascal, Volume 9 (2002) no. 2, p. 345-361
@article{AMBP_2002__9_2_345_0,
     author = {Tr\'eguier, Anne-Marie},
     title = {Mod\'elisation num\'erique pour l'oc\'eanographie physique},
     journal = {Annales math\'ematiques Blaise Pascal},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {9},
     number = {2},
     year = {2002},
     pages = {345-361},
     zbl = {02081319},
     mrnumber = {1969087},
     language = {fr},
     url = {http://www.numdam.org/item/AMBP_2002__9_2_345_0}
}
Tréguier, Anne-Marie. Modélisation numérique pour l'océanographie physique. Annales mathématiques Blaise Pascal, Volume 9 (2002) no. 2, pp. 345-361. http://www.numdam.org/item/AMBP_2002__9_2_345_0/

[1] G.K. Batchelor. Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids., 12, II:233-238, 1969. | Zbl 0217.25801

[2] R. Bleck. An oceanic general circulation model framed in hybrid isopycnic-cartesian coordinates. Ocean Modelling, 4:55-88, 2002.

[3] R. Bleck et D.B. Boudra. Initial testing of a numerical ocean circulation model using a hybrid (quasi-isopycnic) vertical coordinate. J. Phys. Oceanogr., 11:755-770, 1981.

[4] A.F. Blumberg et G.L. Mellor. A description of a three-dimensional coastal ocean circulation model. In Norman S. Heaps, Three-dimensional Coastal ocean models, pages 1-16. American Geophysical Union, 1987.

[5] K. Bryan. A numerical method for the study of the world ocean. J. Comput. Phys., 4:347-376, 1969. | Zbl 0195.55504

[6] X. Carton, R. Baraille, et N. Filatoff. Modèles intermédiaires de circulation océanique. Annales Blaise Pascal, x:x-y, 2002. | Numdam | MR 1969079 | Zbl 02081311

[7] E. Chassignet et J. VerronOcean Modeling and Parameterization, volume 516 of NATO Science series C. Kluwer Academic Publishers, Cambridge, 1990. | MR 1660641 | Zbl 0923.00026

[8] D.G. Dristchel. Contour dynamics and contour surgery: numerical algorithms for extended, high resolution modeling of vortex dynamics in two-dimensional, inviscid, incompressible flow. Comp. Phys. Rep., 10:77, 1989.

[9] P.R. Gent et J.C. Mcwilliams. Isopycnal mixing in ocean circulation model. J. Phys. Oceanogr., 20:150-155, 1990.

[10] P.R. Gent, J. Willebrand, T.J. Mcdougall, et J.C. Mcwilliams. Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25:463-474, 1995.

[11] A.E. Gill et K. Bryan. Effects of geometry on the circulation of a three-dimensional southern hemisphere ocean model. Deep Sea Res., 18:685-721, 1971.

[12] A. Griffa. Applications of stochastic particle models to oceanographic problems. In P. Muller R. Adler et B. Rozovskii, Stochastic Modelling in Physical Oceanography, page 467. Birkhauser, Boston, 1996. | MR 1383872 | Zbl 0864.76074

[13] S.M. Griffies, C. Boening, F.O. Bryan, E.P. Chassignet, R. Gerdes, H. Hasumi, A. Hirst, A.M. Treguier, et D. Webb. Developments in ocean climate modelling. Ocean Modelling, 2:123-192, 2000.

[14] D.B. Haidvogel et A. Beckmann. Numerical Ocean Circulation Modelling, volume 2 of Series on environmental science and management. Imperial College Press, London, 1999. | Zbl 0932.76001

[15] R.H. Kraichnan. Statistical dynamics of two-dimensional flow. J. Fluid. Mech., 67:155-175, 1967. | Zbl 0297.76042

[16] W.G. Large, J.C. Mcwilliams, et S.C. Doney. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32:363-403, 1994.

[17] B. Legras et D.G. Dritschel. A comparison of the contour surgery and psuedospectral method. J. Comp. Phys., 104 (2):287, 1993. | MR 1205688 | Zbl 0784.76070

[18] P. Lynch. Richardson's marvellous forecast. In M A Shapiro et S Grønås, The Life Cycles of Extratropical Cyclones, page 355pp. Amer. Met. Soc., Boston, 1999.

[19] M.E. Mcintyre et W.A. Norton. Potential vorticity inversion on a hemisphere. J. Atmos. Sci., 57(9):1214-1235, 2000. | MR 1763965

[20] J.C. Mcwilliams. The vortices of geostrophic turbulence. J.Fluid. Mech, 219:387-404, 1990.

[21] S. Orszag. Numerical simulation of incompressible flows within simple boundaries: accuracy. J. Fluid. Mech., 49:75-112, 1971. | MR 315915 | Zbl 0229.76029

[22] O.M. Phillips. Turbulence in a strongly stratified fluid - is it unstable? Deep Sea Res., 19:79-81, 1972.

[23] M.H. Redi. Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12:1154-1158, 1982.

[24] P.B. Rhines. Waves and turbulence on a β-plane. J. Fluid. Mech., 69:417-443, 1975. | Zbl 0366.76043

[25] L.F. Richardson. Weather Prediction by numerical Process, volume 516. Cambridge Univ., Press, reprinted in 1965 by Dover publications, New York, 1922. | JFM 48.0629.07

[26] B.R. Ruddick, T.J. Mcdougall, et J.S. Turner. The formation of layers in a uniformly stirred density gradient. Deep Sea Res., 36:597-609, 1989.

[27] A.M. Treguier. Evaluating eddy mixing coefficients from eddy-resolving ocean models: a case study. J. Mar. Res., 57:89-108, 1999.

[28] G.K. Vallis et B.L. Hua. Eddy viscosity and the anticipated potential vorticity method. J. Atmos. Sci., 45:617-627, 1988.

[29] R.C. Wajsowicz. A consistent formulation of the anisotropic stress tensor for use in models of the large scale ocean circulation. J. Comp. Phys., 105:333-338, 1993. | MR 1210413 | Zbl 0767.76013