We study the boundary value problem for the — conformally invariant — super-Liouville functional
@article{AIHPC_2014__31_4_685_0,
author = {Jost, J\"urgen and Wang, Guofang and Zhou, Chunqin and Zhu, Miaomiao},
title = {The boundary value problem for the {super-Liouville} equation},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {685--706},
year = {2014},
publisher = {Elsevier},
volume = {31},
number = {4},
doi = {10.1016/j.anihpc.2013.06.002},
mrnumber = {3249809},
zbl = {1319.30028},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2013.06.002/}
}
TY - JOUR AU - Jost, Jürgen AU - Wang, Guofang AU - Zhou, Chunqin AU - Zhu, Miaomiao TI - The boundary value problem for the super-Liouville equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 685 EP - 706 VL - 31 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2013.06.002/ DO - 10.1016/j.anihpc.2013.06.002 LA - en ID - AIHPC_2014__31_4_685_0 ER -
%0 Journal Article %A Jost, Jürgen %A Wang, Guofang %A Zhou, Chunqin %A Zhu, Miaomiao %T The boundary value problem for the super-Liouville equation %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 685-706 %V 31 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2013.06.002/ %R 10.1016/j.anihpc.2013.06.002 %G en %F AIHPC_2014__31_4_685_0
Jost, Jürgen; Wang, Guofang; Zhou, Chunqin; Zhu, Miaomiao. The boundary value problem for the super-Liouville equation. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 4, pp. 685-706. doi: 10.1016/j.anihpc.2013.06.002
[1] , , , Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623 -727 | MR | Zbl
[2] , , , Exact one-point function of super-Liouville theory with boundary, Nucl. Phys. B 636 no. FS (2002), 497 -513 | MR | Zbl
[3] , , , , Twistor and Killing Spinors on Riemannian Manifolds, Humboldt Universität, Berlin (1990) | MR | Zbl
[4] , , Uniform estimates and blow up behavior for solutions of in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223 -1253 | Zbl
[5] , , , , The boundary value problem for Dirac-harmonic maps, J. Eur. Math. Soc. 15 (2013), 997 -1031 | MR | EuDML | Zbl
[6] , , Super-Liouville theory with boundary, Nucl. Phys. B 635 (2002), 215 -254 | MR | Zbl
[7] , , , , Positive mass theorems for black holes, Comm. Math. Phys. 88 (1983), 295 -308 | MR
[8] , Harmonic spinors, Adv. Math. 14 (1974), 1 -55 | MR | Zbl
[9] , , , Eigenvalue boundary problems for the Dirac operator, Comm. Math. Phys. 231 (2002), 375 -390 | MR | Zbl
[10] , Riemannian Geometry and Geometric Analysis, Springer (2011) | MR | Zbl
[11] , , Analytic aspects of the Toda system: I. A Moser–Trudinger inequality, Comm. Pure Appl. Math. 54 (2001), 1289 -1319 | MR | Zbl
[12] , , , Super-Liouville equations on closed Riemann surfaces, Comm. Partial Differential Equations 32 (2007), 1103 -1128 | MR | Zbl
[13] , , , Metrics of constant curvature on a Riemann surface with two corners on the boundary, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009), 437 -456 | MR | EuDML | Zbl | Numdam
[14] , Uhenbeck Compactness, European Mathematical Society (2004) | MR | Zbl
[15] , , Spin Geometry, Princeton Math. Ser. vol. 38 , Princeton University Press, Princeton, NJ (1989) | MR | Zbl
[16] , Quantum geometry of fermionic strings, Phys. Lett. B 103 (1981), 211 | MR
[17] , The super-Liouville equation on the half-line, Phys. Lett. B 405 (1997), 271 -279 | MR
Cité par Sources :





