We study the boundary value problem for the — conformally invariant — super-Liouville functional
@article{AIHPC_2014__31_4_685_0, author = {Jost, J\"urgen and Wang, Guofang and Zhou, Chunqin and Zhu, Miaomiao}, title = {The boundary value problem for the {super-Liouville} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {685--706}, publisher = {Elsevier}, volume = {31}, number = {4}, year = {2014}, doi = {10.1016/j.anihpc.2013.06.002}, mrnumber = {3249809}, zbl = {1319.30028}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.06.002/} }
TY - JOUR AU - Jost, Jürgen AU - Wang, Guofang AU - Zhou, Chunqin AU - Zhu, Miaomiao TI - The boundary value problem for the super-Liouville equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 685 EP - 706 VL - 31 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2013.06.002/ DO - 10.1016/j.anihpc.2013.06.002 LA - en ID - AIHPC_2014__31_4_685_0 ER -
%0 Journal Article %A Jost, Jürgen %A Wang, Guofang %A Zhou, Chunqin %A Zhu, Miaomiao %T The boundary value problem for the super-Liouville equation %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 685-706 %V 31 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2013.06.002/ %R 10.1016/j.anihpc.2013.06.002 %G en %F AIHPC_2014__31_4_685_0
Jost, Jürgen; Wang, Guofang; Zhou, Chunqin; Zhu, Miaomiao. The boundary value problem for the super-Liouville equation. Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 4, pp. 685-706. doi : 10.1016/j.anihpc.2013.06.002. http://www.numdam.org/articles/10.1016/j.anihpc.2013.06.002/
[1] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623 -727 | MR | Zbl
, , ,[2] Exact one-point function of super-Liouville theory with boundary, Nucl. Phys. B 636 no. FS (2002), 497 -513 | MR | Zbl
, , ,[3] Twistor and Killing Spinors on Riemannian Manifolds, Humboldt Universität, Berlin (1990) | MR | Zbl
, , , ,[4] Uniform estimates and blow up behavior for solutions of in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223 -1253 | Zbl
, ,[5] The boundary value problem for Dirac-harmonic maps, J. Eur. Math. Soc. 15 (2013), 997 -1031 | EuDML | MR | Zbl
, , , ,[6] Super-Liouville theory with boundary, Nucl. Phys. B 635 (2002), 215 -254 | MR | Zbl
, ,[7] Positive mass theorems for black holes, Comm. Math. Phys. 88 (1983), 295 -308 | MR
, , , ,[8] Harmonic spinors, Adv. Math. 14 (1974), 1 -55 | MR | Zbl
,[9] Eigenvalue boundary problems for the Dirac operator, Comm. Math. Phys. 231 (2002), 375 -390 | MR | Zbl
, , ,[10] Riemannian Geometry and Geometric Analysis, Springer (2011) | MR | Zbl
,[11] Analytic aspects of the Toda system: I. A Moser–Trudinger inequality, Comm. Pure Appl. Math. 54 (2001), 1289 -1319 | MR | Zbl
, ,[12] Super-Liouville equations on closed Riemann surfaces, Comm. Partial Differential Equations 32 (2007), 1103 -1128 | MR | Zbl
, , ,[13] Metrics of constant curvature on a Riemann surface with two corners on the boundary, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009), 437 -456 | EuDML | Numdam | MR | Zbl
, , ,[14] Uhenbeck Compactness, European Mathematical Society (2004) | MR | Zbl
,[15] Spin Geometry, Princeton Math. Ser. vol. 38 , Princeton University Press, Princeton, NJ (1989) | MR | Zbl
, ,[16] Quantum geometry of fermionic strings, Phys. Lett. B 103 (1981), 211 | MR
,[17] The super-Liouville equation on the half-line, Phys. Lett. B 405 (1997), 271 -279 | MR
,Cited by Sources: