We prove local existence of smooth solutions for large data and global smooth solutions for small data to the incompressible, resistive, viscous or inviscid Hall-MHD model. We also show a Liouville theorem for the stationary solutions.
Keywords: Hall-MHD, Smooth solutions, Well-posedness, Liouville theorem
@article{AIHPC_2014__31_3_555_0,
author = {Chae, Dongho and Degond, Pierre and Liu, Jian-Guo},
title = {Well-posedness for {Hall-magnetohydrodynamics}},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {555--565},
year = {2014},
publisher = {Elsevier},
volume = {31},
number = {3},
doi = {10.1016/j.anihpc.2013.04.006},
mrnumber = {3208454},
zbl = {1297.35064},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2013.04.006/}
}
TY - JOUR AU - Chae, Dongho AU - Degond, Pierre AU - Liu, Jian-Guo TI - Well-posedness for Hall-magnetohydrodynamics JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 555 EP - 565 VL - 31 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2013.04.006/ DO - 10.1016/j.anihpc.2013.04.006 LA - en ID - AIHPC_2014__31_3_555_0 ER -
%0 Journal Article %A Chae, Dongho %A Degond, Pierre %A Liu, Jian-Guo %T Well-posedness for Hall-magnetohydrodynamics %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 555-565 %V 31 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2013.04.006/ %R 10.1016/j.anihpc.2013.04.006 %G en %F AIHPC_2014__31_3_555_0
Chae, Dongho; Degond, Pierre; Liu, Jian-Guo. Well-posedness for Hall-magnetohydrodynamics. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 3, pp. 555-565. doi: 10.1016/j.anihpc.2013.04.006
[1] , , , , Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, Kinet. Relat. Models 4 (2011), 901 -918 | MR | Zbl
[2] , , Linear analysis of the Hall effect in protostellar disks, Astrophys. J. 552 (2001), 235 -247
[3] , On hydromagnetic waves in atmospheres with application to the sun, Theor. Comput. Fluid Dyn. 10 (1998), 37 -70 | Zbl
[4] , , , , Nonlinear stability of a Vlasov equation for magnetic plasmas, Kinet. Relat. Models 6 (2013), 269 -290 | MR | Zbl
[5] , Perfect Incompressible Fluids, Clarendon Press, Oxford (1998) | MR
[6] , , Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal. 46 (1972), 241 -279 | MR | Zbl
[7] , Magnetic reconnection in solar flares, Geophys. Astrophys. Fluid Dyn. 62 (1991), 15 -36
[8] , An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. II, Springer (1994) | MR | Zbl
[9] , , Bifurcation analysis of magnetic reconnection in Hall-MHD systems, Phys. D 208 (2005), 59 -72 | MR | Zbl
[10] , Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Philos. Trans. R. Soc. Lond. Ser. A 252 (1960), 397 -430 | MR | Zbl
[11] , , Vorticity and Incompressible Flow, Cambridge University Press (2001) | MR
[12] , , , Dynamo action in magnetohydrodynamics and Hall magnetohydrodynamics, Astrophys. J. 587 (2003), 472 -481
[13] , , A review of magneto-vorticity induction in Hall-MHD plasmas, Plasma Phys. Control. Fusion 43 (2001), 195 -221
[14] , , The Hall effect and the decay of magnetic fields, Astron. Astrophys. (1997), 685 -690
[15] , Tools for PDE. Pseudodifferential Operators, Paradifferential Operators and Layer Potentials, American Mathematical Society (2000) | MR | Zbl
[16] , Theory of Function Spaces I, Birkhäuser Basel (1983) | MR
[17] , Star formation and the Hall effect, Astrophys. Space Sci. 292 (2004), 317 -323
Cité par Sources :






