We show that a planar bi-Lipschitz orientation-preserving homeomorphism can be approximated in the norm, together with its inverse, with an orientation-preserving homeomorphism which is piecewise affine or smooth.
@article{AIHPC_2014__31_3_567_0, author = {Daneri, Sara and Pratelli, Aldo}, title = {Smooth approximation of {bi-Lipschitz} orientation-preserving homeomorphisms}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {567--589}, publisher = {Elsevier}, volume = {31}, number = {3}, year = {2014}, doi = {10.1016/j.anihpc.2013.04.007}, mrnumber = {3208455}, zbl = {1348.37071}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.007/} }
TY - JOUR AU - Daneri, Sara AU - Pratelli, Aldo TI - Smooth approximation of bi-Lipschitz orientation-preserving homeomorphisms JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 567 EP - 589 VL - 31 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.007/ DO - 10.1016/j.anihpc.2013.04.007 LA - en ID - AIHPC_2014__31_3_567_0 ER -
%0 Journal Article %A Daneri, Sara %A Pratelli, Aldo %T Smooth approximation of bi-Lipschitz orientation-preserving homeomorphisms %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 567-589 %V 31 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.007/ %R 10.1016/j.anihpc.2013.04.007 %G en %F AIHPC_2014__31_3_567_0
Daneri, Sara; Pratelli, Aldo. Smooth approximation of bi-Lipschitz orientation-preserving homeomorphisms. Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 3, pp. 567-589. doi : 10.1016/j.anihpc.2013.04.007. http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.007/
[1] Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal. 86 (1984), 125 -145 | MR | Zbl
, ,[2] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (1977), 337 -403 | MR | Zbl
,[3] Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc. Lond. A 306 no. 1496 (1982), 557 -611 | MR | Zbl
,[4] Singularities and computation of minimizers for variational problems, Foundations of Computational Mathematics, Oxford, 1999, London Math. Soc. Lecture Note Ser. vol. 284 , Cambridge Univ. Press, Cambridge (2001), 1 -20 | Zbl
,[5] Progress and puzzles in nonlinear elasticity, Proceedings of Course on Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, CISM, Udine (2010), http://dx.doi.org/10.1007/978-3-7091-0174-2
,[6] Approximation of Hölder continuous homeomorphisms by piecewise affine homeomorphisms, Houston J. Math. 37 no. 2 (2011), 449 -500 | MR | Zbl
, ,[7] Locally tame sets are tame, Ann. of Math. 59 (1954), 145 -158 | MR | Zbl
,[8] Stable homeomorphisms on can be approximated by piecewise linear ones, Notices Amer. Math. Soc. 10 (1963), 666
,[9] Approximating stable homeomorphisms by piecewise linear ones, Ann. of Math. 78 (1963), 326 -338 | MR | Zbl
,[10] Homeomorphisms in the Sobolev space , J. Reine Angew. Math. 644 (2010), 221 -235 | MR | Zbl
, , ,[11] A planar bi-Lipschitz extension theorem, Adv. Calc. Var. (2013) | MR | Zbl
, ,[12] Anisotropic Sobolev homeomorphisms, Ann. Acad. Sci. Fenn. Math. 36 no. 2 (2011), 593 -602 | MR | Zbl
, , , ,[13] Quasiconformal 4-manifolds, Acta Math. 163 (1989), 181 -252 | MR | Zbl
, ,[14] Quasiconvexity and partial regularity in the calculus of variations, Arch. Ration. Mech. Anal. 95 no. 3 (1986), 227 -252 | MR | Zbl
,[15] Sharpness of the assumptions for the regularity of a homeomorphism, Michigan Math. J. 59 no. 3 (2010), 667 -678 | MR | Zbl
,[16] Sobolev homeomorphism with zero Jacobian almost everywhere, J. Math. Pures Appl. 95 (2011), 444 -458 | MR | Zbl
,[17] Regularity of the inverse of a planar Sobolev homeomorphism, Arch. Ration. Mech. Anal. 180 (2006), 75 -95 | MR | Zbl
, ,[18] Regularity of the inverse of a Sobolev homeomorphism in space, Proc. Roy. Soc. Edinburgh Sect. A 136A no. 6 (2006), 1267 -1285 | MR | Zbl
, , ,[19] Jacobians of Sobolev homeomorphisms, Calc. Var. Partial Differential Equations 38 (2010), 233 -242 | MR | Zbl
, ,[20] Bi-Sobolev mappings and elliptic equations in the plane, J. Math. Anal. Appl. 355 (2009), 22 -32 | MR | Zbl
, , , ,[21] Hopf differentials and smoothing Sobolev homeomorphisms, Int. Math. Res. Not. IMRN 2012 no. 14 (2012), 3256 -3277 | MR | Zbl
, , ,[22] Diffeomorphic approximation of Sobolev homeomorphisms, Arch. Ration. Mech. Anal. 201 no. 3 (2011), 1047 -1067 | MR | Zbl
, , ,[23] Stable homeomorphisms and the annulus conjecture, Ann. of Math. 89 (1969), 575 -582 | MR | Zbl
,[24] The annulus conjecture and triangulation, Notices Amer. Math. Soc. 16 (1969), 432
, , ,[25] Lipschitz and quasiconformal approximation of homeomorphism pairs, Topology Appl. 109 (2001), 1 -40 | MR | Zbl
,[26] Affine structures in 3-manifolds. IV. Piecewise linear approximations of homeomorphisms, Ann. of Math. 55 (1952), 215 -222 | MR | Zbl
,[27] Geometric Topology in Dimensions 2 and 3, Grad. Texts in Math. vol. 47 , Springer, New York, Heidelberg (1977) | MR | Zbl
,[28] Approximation by piecewise affine homeomorphisms of Sobolev homeomorphisms that are smooth outside a point, Houston J. Math. 35 no. 2 (2009), 515 -539 | MR | Zbl
,[29] Approximation of piecewise affine homeomorphisms by diffeomorphisms, J. Geom. Anal. (2013), http://dx.doi.org/10.1007/s12220-012-9378-1 | MR | Zbl
, ,[30] Quasi-convexity and the semicontinuity of multiple integrals, Pacific J. Math. 2 (1952), 25 -53 | MR | Zbl
,[31] On a new class of elastic deformations not allowing for cavitation, Ann. Inst. Henri Poincaré 11 (1994), 217 -243 | EuDML | Numdam | MR | Zbl
, , ,[32] Über den Begriff Riemannschen Fläche, Acta. Math. Szeged 2 (1925), 101 -121 | JFM
,[33] Topological Embeddings, Pure Appl. Math. vol. 52 , Academic Press, New York, London (1973) | MR | Zbl
,[34] Some remarks on the mollification of piecewise-linear homeomorphisms, J. Math. Sci. (New York) 87 (1997), 3428 -3433 | MR | Zbl
, ,[35] The planar Schönflies theorem for Lipschitz maps, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 no. 1 (1980), 49 -72 | MR | Zbl
,Cited by Sources: