The double-covering map is given by
Le double-revêtement est donné par
@article{AIHPC_2014__31_2_391_0,
author = {Bevan, Jonathan},
title = {On double-covering stationary points of a constrained {Dirichlet} energy},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {391--411},
year = {2014},
publisher = {Elsevier},
volume = {31},
number = {2},
doi = {10.1016/j.anihpc.2013.04.001},
mrnumber = {3181676},
zbl = {1311.49009},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2013.04.001/}
}
TY - JOUR AU - Bevan, Jonathan TI - On double-covering stationary points of a constrained Dirichlet energy JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 391 EP - 411 VL - 31 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2013.04.001/ DO - 10.1016/j.anihpc.2013.04.001 LA - en ID - AIHPC_2014__31_2_391_0 ER -
%0 Journal Article %A Bevan, Jonathan %T On double-covering stationary points of a constrained Dirichlet energy %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 391-411 %V 31 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2013.04.001/ %R 10.1016/j.anihpc.2013.04.001 %G en %F AIHPC_2014__31_2_391_0
Bevan, Jonathan. On double-covering stationary points of a constrained Dirichlet energy. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 2, pp. 391-411. doi: 10.1016/j.anihpc.2013.04.001
[1] , Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 no. 4 (1976/1977), 337-403 | MR | Zbl
[2] , Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc. Lond. Ser. A 306 no. 1496 (1982), 557-611 | MR | Zbl
[3] , Some open problems in elasticity, Geometry, Mechanics, and Dynamics, Springer, New York (2002), 3-59 | MR | Zbl
[4] , , , Maximal smoothness of solutions to certain Euler–Lagrange equations from nonlinear elasticity, Proc. Roy. Soc. Edinburgh Sect. A 119 no. 3–4 (1991), 241-263 | MR | Zbl
[5] , , Minimizers with topological singularities in two dimensional elasticity, ESAIM Control Optim. Calc. Var. 14 no. 1 (2008), 192-209 | MR | EuDML | Zbl | Numdam
[6] , , , , Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 no. 3 (1993), 247-286 | MR | Zbl
[7] , Direct Methods in the Calculus of Variations, Appl. Math. Sci. vol. 78, Springer, New York (2008) | MR | Zbl
[8] , , Weak local minimizers in finite elasticity, J. Elasticity 93 (2008), 203-244 | MR | Zbl
[9] , , Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL (1992) | MR | Zbl
[10] , , On the partial regularity of energy-minimizing, area-preserving maps, Calc. Var. Partial Differential Equations 9 no. 4 (1999), 357-372 | MR | Zbl
[11] , , spaces of several variables, Acta Math. 129 no. 3–4 (1972), 137-193 | MR | Zbl
[12] , , Degree Theory in Analysis and Applications, Oxford Lecture Ser. Math. Appl. vol. 2, Oxford Sci. Publ., The Clarendon Press, Oxford University Press, New York (1995) | MR | Zbl
[13] , Sufficient conditions for regularity of area-preserving deformations, Manuscripta Math. 138 (2012), 463-476 | MR | Zbl
[14] , Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension, C. R. Math. Acad. Sci. Paris 348 no. 17–18 (2010), 1045-1048 | MR | Zbl
[15] , Non-uniqueness of minimizers for strictly polyconvex functionals, Arch. Ration. Mech. Anal. 193 no. 3 (2009), 659-678 | MR | Zbl
[16] , , Quasiconvexity and uniqueness of stationary points on a space of measure preserving maps, J. Convex Anal. 17 no. 1 (2010), 69-79 | MR | Zbl
[17] , , On the symmetry of energy-minimising deformations in nonlinear elasticity. I. Incompressible materials, Arch. Ration. Mech. Anal. 196 no. 2 (2010), 363-394 | MR | Zbl
[18] , , On the symmetry of energy-minimising deformations in nonlinear elasticity. II. Compressible materials, Arch. Ration. Mech. Anal. 196 no. 2 (2010), 395-431 | MR | Zbl
[19] , , On the global stability of two-dimensional, incompressible, elastic bars in uniaxial extension, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466 no. 2116 (2010), 1167-1176 | MR | Zbl
[20] J. Sivaloganathan, S. Spector, On the stability of incompressible elastic cylinders in uniaxial tension, preprint, 2010. | MR
[21] , , Quasiconformal mappings and spaces of functions with generalized first derivatives, Sib. Math. J. 17 no. 3 (1977), 515-531
Cité par Sources :





